Face To BMI:基于深度学习的面部BMI计算方法

Jiten Sidhpura, Rudresh Veerkhare, Parshwa Shah, S. Dholay
{"title":"Face To BMI:基于深度学习的面部BMI计算方法","authors":"Jiten Sidhpura, Rudresh Veerkhare, Parshwa Shah, S. Dholay","doi":"10.1109/ICITIIT54346.2022.9744191","DOIUrl":null,"url":null,"abstract":"Body Mass Index (BMI) is a measure of how healthy a person is with respect to their body weight. BMI has shown a correlation with various factors like physical health, mental health, popularity. BMI calculation often requires accurate height and weight, which would take manual work to measure. Largescale automation of BMI calculation can be utilized for analyzing various aspects of society and can be used by governments and companies to make effective decisions. Previous works have used only geometric facial features discarding other information, or a data-driven deep learning-based approach in which the amount of data becomes a bottleneck. We used the state of the art pre-trained models such as Inception-v3, VGG-Faces, VGG19, Xception and fine-tuned them on the comparatively large public dataset with discriminative learning. We used the larger Illinois DOC labeled faces dataset for training and Arrest Records, VIP_attribute for evaluation purposes.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face To BMI: A Deep Learning Based Approach for Computing BMI from Face\",\"authors\":\"Jiten Sidhpura, Rudresh Veerkhare, Parshwa Shah, S. Dholay\",\"doi\":\"10.1109/ICITIIT54346.2022.9744191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Body Mass Index (BMI) is a measure of how healthy a person is with respect to their body weight. BMI has shown a correlation with various factors like physical health, mental health, popularity. BMI calculation often requires accurate height and weight, which would take manual work to measure. Largescale automation of BMI calculation can be utilized for analyzing various aspects of society and can be used by governments and companies to make effective decisions. Previous works have used only geometric facial features discarding other information, or a data-driven deep learning-based approach in which the amount of data becomes a bottleneck. We used the state of the art pre-trained models such as Inception-v3, VGG-Faces, VGG19, Xception and fine-tuned them on the comparatively large public dataset with discriminative learning. We used the larger Illinois DOC labeled faces dataset for training and Arrest Records, VIP_attribute for evaluation purposes.\",\"PeriodicalId\":184353,\"journal\":{\"name\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT54346.2022.9744191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

身体质量指数(BMI)是衡量一个人相对于体重的健康程度的指标。BMI与身体健康,心理健康,受欢迎程度等多种因素相关。BMI的计算通常需要精确的身高和体重,这需要人工来测量。BMI计算的大规模自动化可用于分析社会的各个方面,并可用于政府和公司做出有效的决策。以前的工作只使用几何面部特征,而忽略了其他信息,或者使用数据驱动的基于深度学习的方法,其中数据量成为瓶颈。我们使用了最先进的预训练模型,如Inception-v3、VGG-Faces、VGG19、Xception,并在相对较大的公共数据集上使用判别学习对它们进行了微调。我们使用较大的伊利诺伊州DOC标记的人脸数据集进行训练,使用逮捕记录和VIP_attribute进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face To BMI: A Deep Learning Based Approach for Computing BMI from Face
Body Mass Index (BMI) is a measure of how healthy a person is with respect to their body weight. BMI has shown a correlation with various factors like physical health, mental health, popularity. BMI calculation often requires accurate height and weight, which would take manual work to measure. Largescale automation of BMI calculation can be utilized for analyzing various aspects of society and can be used by governments and companies to make effective decisions. Previous works have used only geometric facial features discarding other information, or a data-driven deep learning-based approach in which the amount of data becomes a bottleneck. We used the state of the art pre-trained models such as Inception-v3, VGG-Faces, VGG19, Xception and fine-tuned them on the comparatively large public dataset with discriminative learning. We used the larger Illinois DOC labeled faces dataset for training and Arrest Records, VIP_attribute for evaluation purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HomeID: Home Visitors Recognition using Internet of Things and Deep Learning Algorithms Auto-Encoder LSTM for learning dependency of traffic flow by sequencing spatial-temporal traffic flow rate: A speed up technique for routing vehicles between origin and destination A Statistical Study and Analysis to Identify the Importance of Open-source Software Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets Miniature probability maps using resource limited embedded device for classification of histopathological images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1