基于重尾分布和傅立叶分析的仿射不变高光谱纹理描述子

P. Khuwuthyakorn, A. Robles-Kelly, J. Zhou
{"title":"基于重尾分布和傅立叶分析的仿射不变高光谱纹理描述子","authors":"P. Khuwuthyakorn, A. Robles-Kelly, J. Zhou","doi":"10.1109/CVPRW.2009.5204126","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of recovering a hyperspectral texture descriptor. We do this by viewing the wavelength-indexed bands corresponding to the texture in the image as those arising from a stochastic process whose statistics can be captured making use of the relationships between moment generating functions and Fourier kernels. In this manner, we can interpret the probability distribution of the hyper-spectral texture as a heavy-tailed one which can be rendered invariant to affine geometric transformations on the texture plane making use of the spectral power of its Fourier cosine transform. We do this by recovering the affine geometric distortion matrices corresponding to the probability density function for the texture under study. This treatment permits the development of a robust descriptor which has a high information compaction property and can capture the space and wavelength correlation for the spectra in the hyperspectral images. We illustrate the utility of our descriptor for purposes of recognition and provide results on real-world datasets. We also compare our results to those yielded by a number of alternatives.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An affine Invariant hyperspectral texture descriptor based upon heavy-tailed distributions and fourier analysis\",\"authors\":\"P. Khuwuthyakorn, A. Robles-Kelly, J. Zhou\",\"doi\":\"10.1109/CVPRW.2009.5204126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of recovering a hyperspectral texture descriptor. We do this by viewing the wavelength-indexed bands corresponding to the texture in the image as those arising from a stochastic process whose statistics can be captured making use of the relationships between moment generating functions and Fourier kernels. In this manner, we can interpret the probability distribution of the hyper-spectral texture as a heavy-tailed one which can be rendered invariant to affine geometric transformations on the texture plane making use of the spectral power of its Fourier cosine transform. We do this by recovering the affine geometric distortion matrices corresponding to the probability density function for the texture under study. This treatment permits the development of a robust descriptor which has a high information compaction property and can capture the space and wavelength correlation for the spectra in the hyperspectral images. We illustrate the utility of our descriptor for purposes of recognition and provide results on real-world datasets. We also compare our results to those yielded by a number of alternatives.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们解决了高光谱纹理描述符的恢复问题。我们通过将图像中与纹理对应的波长索引波段视为随机过程产生的波段来实现这一点,随机过程的统计数据可以利用矩生成函数和傅立叶核之间的关系来捕获。通过这种方式,我们可以将高光谱纹理的概率分布解释为一个重尾分布,利用其傅立叶余弦变换的光谱功率,可以使其对纹理平面上的仿射几何变换保持不变。我们通过恢复与所研究纹理的概率密度函数相对应的仿射几何畸变矩阵来实现这一点。这种处理允许开发具有高信息压缩特性的鲁棒描述子,并且可以捕获高光谱图像中光谱的空间和波长相关性。我们举例说明了我们的描述符用于识别的效用,并提供了真实世界数据集的结果。我们还将我们的结果与许多替代方法产生的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An affine Invariant hyperspectral texture descriptor based upon heavy-tailed distributions and fourier analysis
In this paper, we address the problem of recovering a hyperspectral texture descriptor. We do this by viewing the wavelength-indexed bands corresponding to the texture in the image as those arising from a stochastic process whose statistics can be captured making use of the relationships between moment generating functions and Fourier kernels. In this manner, we can interpret the probability distribution of the hyper-spectral texture as a heavy-tailed one which can be rendered invariant to affine geometric transformations on the texture plane making use of the spectral power of its Fourier cosine transform. We do this by recovering the affine geometric distortion matrices corresponding to the probability density function for the texture under study. This treatment permits the development of a robust descriptor which has a high information compaction property and can capture the space and wavelength correlation for the spectra in the hyperspectral images. We illustrate the utility of our descriptor for purposes of recognition and provide results on real-world datasets. We also compare our results to those yielded by a number of alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1