基于自动语义分类的大规模卫星图像浏览

A. Parulekar, R. Datta, Jia Li, J.Z. Wang
{"title":"基于自动语义分类的大规模卫星图像浏览","authors":"A. Parulekar, R. Datta, Jia Li, J.Z. Wang","doi":"10.1109/ICCV.2005.257","DOIUrl":null,"url":null,"abstract":"We approach the problem of large-scale satellite image browsing from a content-based retrieval and semantic categorization perspective. A two-stage method for query based automatic retrieval of satellite image patches is proposed. The semantic category of query patches are determined and patches from that category are ranked based on an image similarity measure. Semantic categorization is done by a learning approach involving the two-dimensional multi-resolution hidden Markov model (2-D MHMM). Patches that do not belong to any trained category are handled using a support vector machine (SVM) based classifier. Experiments yield promising results in modeling semantic categories within satellite images using 2-D MHMM, producing accurate and convenient browsing. We also show that prior semantic categorization improves retrieval performance.","PeriodicalId":432729,"journal":{"name":"Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Large-scale Satellite Image Browsing using Automatic Semantic Categorization\",\"authors\":\"A. Parulekar, R. Datta, Jia Li, J.Z. Wang\",\"doi\":\"10.1109/ICCV.2005.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We approach the problem of large-scale satellite image browsing from a content-based retrieval and semantic categorization perspective. A two-stage method for query based automatic retrieval of satellite image patches is proposed. The semantic category of query patches are determined and patches from that category are ranked based on an image similarity measure. Semantic categorization is done by a learning approach involving the two-dimensional multi-resolution hidden Markov model (2-D MHMM). Patches that do not belong to any trained category are handled using a support vector machine (SVM) based classifier. Experiments yield promising results in modeling semantic categories within satellite images using 2-D MHMM, producing accurate and convenient browsing. We also show that prior semantic categorization improves retrieval performance.\",\"PeriodicalId\":432729,\"journal\":{\"name\":\"Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2005.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2005.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们从基于内容的检索和语义分类的角度来研究大规模卫星图像浏览问题。提出了一种基于查询的两阶段卫星图像斑块自动检索方法。确定查询补丁的语义类别,并根据图像相似性度量对该类别的补丁进行排序。语义分类是通过二维多分辨率隐马尔可夫模型(2-D MHMM)的学习方法完成的。不属于任何训练类别的补丁使用基于支持向量机(SVM)的分类器进行处理。实验结果表明,利用二维MHMM对卫星图像中的语义类别进行建模,可以产生准确和方便的浏览。我们还表明,先验语义分类提高了检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale Satellite Image Browsing using Automatic Semantic Categorization
We approach the problem of large-scale satellite image browsing from a content-based retrieval and semantic categorization perspective. A two-stage method for query based automatic retrieval of satellite image patches is proposed. The semantic category of query patches are determined and patches from that category are ranked based on an image similarity measure. Semantic categorization is done by a learning approach involving the two-dimensional multi-resolution hidden Markov model (2-D MHMM). Patches that do not belong to any trained category are handled using a support vector machine (SVM) based classifier. Experiments yield promising results in modeling semantic categories within satellite images using 2-D MHMM, producing accurate and convenient browsing. We also show that prior semantic categorization improves retrieval performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalised exemplar approach to modeling perception action coupling Incorporating Semantic Constraints into a Discriminative Categorization and Labelling Model. Large-scale Satellite Image Browsing using Automatic Semantic Categorization EDF: A framework for Semantic Annotation of Video Symbol Grounding for Semantic Image Interpretation: From Image Data to Semantics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1