预测有机溶质超滤过程中通量下降的联合结垢模型的验证

I. N. H. M. Amin, A. Mohammad
{"title":"预测有机溶质超滤过程中通量下降的联合结垢模型的验证","authors":"I. N. H. M. Amin, A. Mohammad","doi":"10.11113/AMST.V22N2.138","DOIUrl":null,"url":null,"abstract":"Studies were conducted to investigate the blocking mechanism and flux decline behavior while treating organic solutes contained in glycerin-water solutions (triglycerides, TG and fatty acid, FA). Two ultrafiltration membranes were tested, polyethersulphone (PES 25 kDa) and polyvinylidenfluoride (PVDF 30 kDa) membranes. Influence of TG and its combination (TG-FA mixtures) as foulant models, pH of feed solutions (3–10) and membrane surface chemistry were investigated. Combined blocking model was applied and the fitting were discriminate that the flux decline of PES membrane was dominated by pore blockage at the early stage and later by cake resistance during the entire filtration time. However, for PVDF membrane, cake formation mechanism was acknowledged as the major contributor to the fouling mechanism for all the parameters tested. On the other hand, the model predicts there are two stages of filtration appeared to occur, involving pore blockage at the early stage followed by cake formation.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of a Combined Fouling Model to Predict Flux Decline during Ultrafiltration of Organic Solutes\",\"authors\":\"I. N. H. M. Amin, A. Mohammad\",\"doi\":\"10.11113/AMST.V22N2.138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies were conducted to investigate the blocking mechanism and flux decline behavior while treating organic solutes contained in glycerin-water solutions (triglycerides, TG and fatty acid, FA). Two ultrafiltration membranes were tested, polyethersulphone (PES 25 kDa) and polyvinylidenfluoride (PVDF 30 kDa) membranes. Influence of TG and its combination (TG-FA mixtures) as foulant models, pH of feed solutions (3–10) and membrane surface chemistry were investigated. Combined blocking model was applied and the fitting were discriminate that the flux decline of PES membrane was dominated by pore blockage at the early stage and later by cake resistance during the entire filtration time. However, for PVDF membrane, cake formation mechanism was acknowledged as the major contributor to the fouling mechanism for all the parameters tested. On the other hand, the model predicts there are two stages of filtration appeared to occur, involving pore blockage at the early stage followed by cake formation.\",\"PeriodicalId\":326334,\"journal\":{\"name\":\"Journal of Applied Membrane Science & Technology\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Membrane Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/AMST.V22N2.138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/AMST.V22N2.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在处理甘油-水溶液中含有的有机溶质(甘油三酯、TG和脂肪酸、FA)时的阻断机制和通量下降行为。测试了两种超滤膜,聚醚砜(PES 25 kDa)和聚偏氟乙烯(PVDF 30 kDa)膜。研究了TG及其组合(TG- fa混合物)作为污染物模型、饲料溶液pH(3-10)和膜表面化学的影响。采用复合堵塞模型进行拟合,发现在整个过滤时间内,PES膜通量的下降主要是早期的孔隙堵塞,后期的滤饼阻力。然而,对于PVDF膜,在所有测试参数中,饼的形成机制被认为是污染机制的主要贡献者。另一方面,该模型预测了两个阶段的过滤,即早期孔隙堵塞和滤饼的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verification of a Combined Fouling Model to Predict Flux Decline during Ultrafiltration of Organic Solutes
Studies were conducted to investigate the blocking mechanism and flux decline behavior while treating organic solutes contained in glycerin-water solutions (triglycerides, TG and fatty acid, FA). Two ultrafiltration membranes were tested, polyethersulphone (PES 25 kDa) and polyvinylidenfluoride (PVDF 30 kDa) membranes. Influence of TG and its combination (TG-FA mixtures) as foulant models, pH of feed solutions (3–10) and membrane surface chemistry were investigated. Combined blocking model was applied and the fitting were discriminate that the flux decline of PES membrane was dominated by pore blockage at the early stage and later by cake resistance during the entire filtration time. However, for PVDF membrane, cake formation mechanism was acknowledged as the major contributor to the fouling mechanism for all the parameters tested. On the other hand, the model predicts there are two stages of filtration appeared to occur, involving pore blockage at the early stage followed by cake formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Progress on Tailoring and Modification of Membranes for Membrane Distillation: A Review The Future Challenges of Anaerobic Membrane Bioreactor (AnMBR) for High Strength Wastewater Mathematical Modeling of Extraction of Neodymium using Pseudo-emulsion based Hollow Fiber Strip Dispersion (PEHFSD) Grand Challenges of Perovskite and Metal Oxide-based Membrane: A Form of Dual-layer Hollow Fibre Clay Ceramic Support Membrane Optimization Using Factorial Design Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1