按需小翼流场对机翼气动性能影响的数值分析

A. Rajesh, Badri Dr, Ganesha Prasad Ms
{"title":"按需小翼流场对机翼气动性能影响的数值分析","authors":"A. Rajesh, Badri Dr, Ganesha Prasad Ms","doi":"10.4172/2168-9792.1000198","DOIUrl":null,"url":null,"abstract":"A numerical study was undertaken to study the effect of the span wise injection on the performance of a 3D wing at a velocity of 15 m/s and angle of attack of 6°, 8°, and 10°. A baseline configuration along with injection at tip was studied. A study was conducted to understand the flow field and the winglet control techniques. Based on the study, a wing configuration was chosen as baseline configurations and different injection velocities were applied to this configuration. The chord wise pressure distribution is seen to change with the span wise location from the root and this distribution is affected by the wing tip vortex. The wingtip was observed to change the pressure distribution near the tip. The velocity field, stream lines and the vortices were seen to be affected by the presence of the injection. The lift and drag values were seen to decrease with the angle of attack but the l/d ratio remained nearly constant for all the injection configurations. Maximum reduction in drag of nearly 19% could be achieved with the injection. This study proved the possibility of using span wise injection as a control method to control the wing tip vortex.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Analysis on the Effect of Fluidic on Demand Winglet on the Aerodynamic Performance of the Wing\",\"authors\":\"A. Rajesh, Badri Dr, Ganesha Prasad Ms\",\"doi\":\"10.4172/2168-9792.1000198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical study was undertaken to study the effect of the span wise injection on the performance of a 3D wing at a velocity of 15 m/s and angle of attack of 6°, 8°, and 10°. A baseline configuration along with injection at tip was studied. A study was conducted to understand the flow field and the winglet control techniques. Based on the study, a wing configuration was chosen as baseline configurations and different injection velocities were applied to this configuration. The chord wise pressure distribution is seen to change with the span wise location from the root and this distribution is affected by the wing tip vortex. The wingtip was observed to change the pressure distribution near the tip. The velocity field, stream lines and the vortices were seen to be affected by the presence of the injection. The lift and drag values were seen to decrease with the angle of attack but the l/d ratio remained nearly constant for all the injection configurations. Maximum reduction in drag of nearly 19% could be achieved with the injection. This study proved the possibility of using span wise injection as a control method to control the wing tip vortex.\",\"PeriodicalId\":356774,\"journal\":{\"name\":\"Journal of Aeronautics and Aerospace Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aeronautics and Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9792.1000198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在速度为15 m/s、攻角为6°、8°和10°的情况下,采用数值方法研究了跨向喷射对三维机翼性能的影响。研究了沿尖端注射的基线构型。对流场和小波控制技术进行了研究。在此基础上,选择了一种机翼构型作为基准构型,并对该构型应用了不同的喷射速度。弦向压力分布随距向位置的变化而变化,这种分布受翼尖涡的影响。观察到翼尖改变了翼尖附近的压力分布。速度场、流线和涡旋都受到注入的影响。升力和阻力值随着迎角的减小而减小,但l/d比在所有注入配置中几乎保持不变。通过注入可以最大程度地降低近19%的阻力。本研究证明了采用跨距喷射作为控制翼尖涡的一种方法的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Analysis on the Effect of Fluidic on Demand Winglet on the Aerodynamic Performance of the Wing
A numerical study was undertaken to study the effect of the span wise injection on the performance of a 3D wing at a velocity of 15 m/s and angle of attack of 6°, 8°, and 10°. A baseline configuration along with injection at tip was studied. A study was conducted to understand the flow field and the winglet control techniques. Based on the study, a wing configuration was chosen as baseline configurations and different injection velocities were applied to this configuration. The chord wise pressure distribution is seen to change with the span wise location from the root and this distribution is affected by the wing tip vortex. The wingtip was observed to change the pressure distribution near the tip. The velocity field, stream lines and the vortices were seen to be affected by the presence of the injection. The lift and drag values were seen to decrease with the angle of attack but the l/d ratio remained nearly constant for all the injection configurations. Maximum reduction in drag of nearly 19% could be achieved with the injection. This study proved the possibility of using span wise injection as a control method to control the wing tip vortex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical Behavior of a Fuselage Stiffened Carbon-Epoxy Panel under Debonding Load On the Modeling of Light Aircraft Landing Gears Various aspects of situation awareness with respect to human-machine-interaction while using optoavionic cockpit instrumentation in aircraft Autopilot Design of Unmanned Aerial Vehicle A New Methodology for Aerodynamic Design and Analysis of a Small Scale Blended Wing Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1