{"title":"基于三元传播的局部搜索更精确的位推理","authors":"Aina Niemetz, Mathias Preiner","doi":"10.34727/2020/isbn.978-3-85448-042-6_29","DOIUrl":null,"url":null,"abstract":"Current state of the art for reasoning about quantifier-free bit-vector constraints in Satisfiability Modulo Theories (SMT) is a technique called bit-blasting, an eager translation into propositional logic (SAT). While efficient in practice, it may not scale for large bit-widths when the input size cannot be sufficiently reduced with preprocessing techniques. A recent propagation-based local search procedure was shown to be effective on hard satisfiable instances, in particular in combination with bit-blasting in a sequential portfolio setting. However, a major weakness of this approach is its obliviousness to bits that can be simplified to constant values. In this paper, we generalize propagation-based local search with respect to such constant bits to ternary values. We further extend the procedure to handle more bit-vector operators, and introduce heuristics for more precise inverse value computation via bound tightening for inequality constraints. We provide an extensive experimental evaluation and show that the presented techniques yield a considerable improvement in performance.","PeriodicalId":105705,"journal":{"name":"2020 Formal Methods in Computer Aided Design (FMCAD)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ternary Propagation-Based Local Search for more Bit-Precise Reasoning\",\"authors\":\"Aina Niemetz, Mathias Preiner\",\"doi\":\"10.34727/2020/isbn.978-3-85448-042-6_29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current state of the art for reasoning about quantifier-free bit-vector constraints in Satisfiability Modulo Theories (SMT) is a technique called bit-blasting, an eager translation into propositional logic (SAT). While efficient in practice, it may not scale for large bit-widths when the input size cannot be sufficiently reduced with preprocessing techniques. A recent propagation-based local search procedure was shown to be effective on hard satisfiable instances, in particular in combination with bit-blasting in a sequential portfolio setting. However, a major weakness of this approach is its obliviousness to bits that can be simplified to constant values. In this paper, we generalize propagation-based local search with respect to such constant bits to ternary values. We further extend the procedure to handle more bit-vector operators, and introduce heuristics for more precise inverse value computation via bound tightening for inequality constraints. We provide an extensive experimental evaluation and show that the presented techniques yield a considerable improvement in performance.\",\"PeriodicalId\":105705,\"journal\":{\"name\":\"2020 Formal Methods in Computer Aided Design (FMCAD)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Formal Methods in Computer Aided Design (FMCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Formal Methods in Computer Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ternary Propagation-Based Local Search for more Bit-Precise Reasoning
Current state of the art for reasoning about quantifier-free bit-vector constraints in Satisfiability Modulo Theories (SMT) is a technique called bit-blasting, an eager translation into propositional logic (SAT). While efficient in practice, it may not scale for large bit-widths when the input size cannot be sufficiently reduced with preprocessing techniques. A recent propagation-based local search procedure was shown to be effective on hard satisfiable instances, in particular in combination with bit-blasting in a sequential portfolio setting. However, a major weakness of this approach is its obliviousness to bits that can be simplified to constant values. In this paper, we generalize propagation-based local search with respect to such constant bits to ternary values. We further extend the procedure to handle more bit-vector operators, and introduce heuristics for more precise inverse value computation via bound tightening for inequality constraints. We provide an extensive experimental evaluation and show that the presented techniques yield a considerable improvement in performance.