Ruize Han, Yiyang Gan, Jiacheng Li, F. Wang, Wei Feng, Song Wang
{"title":"连接互补视点视频:联合摄像机识别与主体关联","authors":"Ruize Han, Yiyang Gan, Jiacheng Li, F. Wang, Wei Feng, Song Wang","doi":"10.1109/CVPR52688.2022.00245","DOIUrl":null,"url":null,"abstract":"We attempt to connect the data from complementary views, i.e., top view from drone-mounted cameras in the air, and side view from wearable cameras on the ground. Collaborative analysis of such complementary-view data can facilitate to build the air-ground cooperative visual system for various kinds of applications. This is a very challenging problem due to the large view difference between top and side views. In this paper, we develop a new approach that can simultaneously handle three tasks: i) localizing the side-view camera in the top view; ii) estimating the view direction of the side-view camera; iii) detecting and associating the same subjects on the ground across the complementary views. Our main idea is to explore the spatial position layout of the subjects in two views. In particular, we propose a spatial-aware position representation method to embed the spatial-position distribution of the subjects in different views. We further design a cross-view video collaboration framework composed of a camera identification module and a subject association module to simultaneously perform the above three tasks. We collect a new synthetic dataset consisting of top-view and side-view video sequence pairs for performance evaluation and the experimental results show the effectiveness of the proposed method.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Connecting the Complementary-view Videos: Joint Camera Identification and Subject Association\",\"authors\":\"Ruize Han, Yiyang Gan, Jiacheng Li, F. Wang, Wei Feng, Song Wang\",\"doi\":\"10.1109/CVPR52688.2022.00245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We attempt to connect the data from complementary views, i.e., top view from drone-mounted cameras in the air, and side view from wearable cameras on the ground. Collaborative analysis of such complementary-view data can facilitate to build the air-ground cooperative visual system for various kinds of applications. This is a very challenging problem due to the large view difference between top and side views. In this paper, we develop a new approach that can simultaneously handle three tasks: i) localizing the side-view camera in the top view; ii) estimating the view direction of the side-view camera; iii) detecting and associating the same subjects on the ground across the complementary views. Our main idea is to explore the spatial position layout of the subjects in two views. In particular, we propose a spatial-aware position representation method to embed the spatial-position distribution of the subjects in different views. We further design a cross-view video collaboration framework composed of a camera identification module and a subject association module to simultaneously perform the above three tasks. We collect a new synthetic dataset consisting of top-view and side-view video sequence pairs for performance evaluation and the experimental results show the effectiveness of the proposed method.\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.00245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Connecting the Complementary-view Videos: Joint Camera Identification and Subject Association
We attempt to connect the data from complementary views, i.e., top view from drone-mounted cameras in the air, and side view from wearable cameras on the ground. Collaborative analysis of such complementary-view data can facilitate to build the air-ground cooperative visual system for various kinds of applications. This is a very challenging problem due to the large view difference between top and side views. In this paper, we develop a new approach that can simultaneously handle three tasks: i) localizing the side-view camera in the top view; ii) estimating the view direction of the side-view camera; iii) detecting and associating the same subjects on the ground across the complementary views. Our main idea is to explore the spatial position layout of the subjects in two views. In particular, we propose a spatial-aware position representation method to embed the spatial-position distribution of the subjects in different views. We further design a cross-view video collaboration framework composed of a camera identification module and a subject association module to simultaneously perform the above three tasks. We collect a new synthetic dataset consisting of top-view and side-view video sequence pairs for performance evaluation and the experimental results show the effectiveness of the proposed method.