{"title":"绳索直方图作为关节轨迹表示在人体运动识别中的应用","authors":"Z. Nejim, Makrem Mestiri, H. Amiri","doi":"10.1109/ATSIP.2017.8075532","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for 3D skeleton-based human motion recognition is discussed. First, we opted to represent the movement as a set of body joints trajectories. Those trajectories are then converted into ropes histograms. The motion records are obtained using the Kinect motion sensor. The classification phase consists in comparing those histograms with ropes histograms of a set of reference motions. This method is then tested on a random dataset of recorded motions and have presented an accuracy rate of 85%.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of ropes histograms as joints trajectories representation for human motion recognition\",\"authors\":\"Z. Nejim, Makrem Mestiri, H. Amiri\",\"doi\":\"10.1109/ATSIP.2017.8075532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new approach for 3D skeleton-based human motion recognition is discussed. First, we opted to represent the movement as a set of body joints trajectories. Those trajectories are then converted into ropes histograms. The motion records are obtained using the Kinect motion sensor. The classification phase consists in comparing those histograms with ropes histograms of a set of reference motions. This method is then tested on a random dataset of recorded motions and have presented an accuracy rate of 85%.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of ropes histograms as joints trajectories representation for human motion recognition
In this paper, a new approach for 3D skeleton-based human motion recognition is discussed. First, we opted to represent the movement as a set of body joints trajectories. Those trajectories are then converted into ropes histograms. The motion records are obtained using the Kinect motion sensor. The classification phase consists in comparing those histograms with ropes histograms of a set of reference motions. This method is then tested on a random dataset of recorded motions and have presented an accuracy rate of 85%.