一种可穿戴、多模态避障信息呈现装置的分析

Alison Gibson, Andrea K. Webb, L. Stirling
{"title":"一种可穿戴、多模态避障信息呈现装置的分析","authors":"Alison Gibson, Andrea K. Webb, L. Stirling","doi":"10.1109/AERO.2017.7943704","DOIUrl":null,"url":null,"abstract":"The future of human space exploration will involve extra-vehicular activities (EVA) on foreign planetary surfaces (i.e. Mars), an activity that will have significantly different characteristics than the common exploration scenarios on Earth. These activities become challenging due to restricted visual cues and other limitations placed on sensory feedback from altered gravity and the pressurized suit. The use of a bulky, pressurized EVA suit perceptually disconnects human explorers from the hostile foreign environment, increasing the navigation workload and risk of collision associated with traversing through unfamiliar terrain. Due to the hazardous nature of this work, there is a critical need to design multimodal interfaces for optimizing task performance and minimizing risks; in particular, an information presentation device that can aid in obstacle avoidance during surface exploration and way-finding. Previous research has shown that multimodal cues can communicate risk more efficiently than cues to a single modality. This paper presents a wearable interface system to examine human performance when visual, vibratory, and visual-vibratory cues are provided to aid ground obstacle avoidance. The wearable system applies vibro-tactile cues to the feet and visual cues through augmented reality glasses to convey obstacle location and proximity during an approach. This study examined participants stepping over a randomly placed obstacle in a path while wearing the multimodal interface. Measures of performance included path completion time, subjective workload, head-down time, collisions, as well as gait parameters. Differences in obstacle avoidance performance were analyzed across conditions and results provide implications for presenting multimodal information during active tasks such as obstacle avoidance.","PeriodicalId":224475,"journal":{"name":"2017 IEEE Aerospace Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of a wearable, multi-modal information presentation device for obstacle avoidance\",\"authors\":\"Alison Gibson, Andrea K. Webb, L. Stirling\",\"doi\":\"10.1109/AERO.2017.7943704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The future of human space exploration will involve extra-vehicular activities (EVA) on foreign planetary surfaces (i.e. Mars), an activity that will have significantly different characteristics than the common exploration scenarios on Earth. These activities become challenging due to restricted visual cues and other limitations placed on sensory feedback from altered gravity and the pressurized suit. The use of a bulky, pressurized EVA suit perceptually disconnects human explorers from the hostile foreign environment, increasing the navigation workload and risk of collision associated with traversing through unfamiliar terrain. Due to the hazardous nature of this work, there is a critical need to design multimodal interfaces for optimizing task performance and minimizing risks; in particular, an information presentation device that can aid in obstacle avoidance during surface exploration and way-finding. Previous research has shown that multimodal cues can communicate risk more efficiently than cues to a single modality. This paper presents a wearable interface system to examine human performance when visual, vibratory, and visual-vibratory cues are provided to aid ground obstacle avoidance. The wearable system applies vibro-tactile cues to the feet and visual cues through augmented reality glasses to convey obstacle location and proximity during an approach. This study examined participants stepping over a randomly placed obstacle in a path while wearing the multimodal interface. Measures of performance included path completion time, subjective workload, head-down time, collisions, as well as gait parameters. Differences in obstacle avoidance performance were analyzed across conditions and results provide implications for presenting multimodal information during active tasks such as obstacle avoidance.\",\"PeriodicalId\":224475,\"journal\":{\"name\":\"2017 IEEE Aerospace Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2017.7943704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2017.7943704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人类空间探索的未来将涉及在外国行星表面(即火星)进行的舱外活动,这种活动将具有与地球上常见的探索情景显著不同的特征。由于受到视觉线索的限制,以及重力变化和加压宇航服带来的感官反馈的其他限制,这些活动变得具有挑战性。笨重的加压舱外活动太空服的使用在感知上切断了人类探险者与敌对外部环境的联系,增加了导航工作量和穿越陌生地形时发生碰撞的风险。由于这项工作的危险性,迫切需要设计多模态接口,以优化任务性能并最大限度地降低风险;特别地,一种在表面探测和寻路过程中能够帮助避障的信息呈现装置。先前的研究表明,多模态线索比单一模态线索更能有效地传达风险。本文提出了一种可穿戴界面系统,当提供视觉、振动和视觉振动提示以帮助避免地面障碍物时,可以检查人类的表现。该可穿戴系统将振动触觉提示应用到脚上,并通过增强现实眼镜提供视觉提示,以在接近过程中传达障碍物的位置和接近程度。在这项研究中,参与者戴着多模式界面,跨过道路上随机放置的障碍物。性能测量包括路径完成时间、主观工作量、头部下降时间、碰撞以及步态参数。分析了不同条件下避障表现的差异,结果为在主动任务(如避障)中呈现多模态信息提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of a wearable, multi-modal information presentation device for obstacle avoidance
The future of human space exploration will involve extra-vehicular activities (EVA) on foreign planetary surfaces (i.e. Mars), an activity that will have significantly different characteristics than the common exploration scenarios on Earth. These activities become challenging due to restricted visual cues and other limitations placed on sensory feedback from altered gravity and the pressurized suit. The use of a bulky, pressurized EVA suit perceptually disconnects human explorers from the hostile foreign environment, increasing the navigation workload and risk of collision associated with traversing through unfamiliar terrain. Due to the hazardous nature of this work, there is a critical need to design multimodal interfaces for optimizing task performance and minimizing risks; in particular, an information presentation device that can aid in obstacle avoidance during surface exploration and way-finding. Previous research has shown that multimodal cues can communicate risk more efficiently than cues to a single modality. This paper presents a wearable interface system to examine human performance when visual, vibratory, and visual-vibratory cues are provided to aid ground obstacle avoidance. The wearable system applies vibro-tactile cues to the feet and visual cues through augmented reality glasses to convey obstacle location and proximity during an approach. This study examined participants stepping over a randomly placed obstacle in a path while wearing the multimodal interface. Measures of performance included path completion time, subjective workload, head-down time, collisions, as well as gait parameters. Differences in obstacle avoidance performance were analyzed across conditions and results provide implications for presenting multimodal information during active tasks such as obstacle avoidance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedule and program The search for exoplanets using ultra-long wavelength radio astronomy Molecular analyzer for Complex Refractory Organic-rich Surfaces (MACROS) GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless compression implementation Ground based test verification of a nonlinear vibration isolation system for cryocoolers of the Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1