{"title":"基于射频能量收集设计的无线传感器网络能耗实证研究","authors":"E. Utami, Deddy Susilo, Budihardja Murtianta","doi":"10.1109/ICITACEE.2014.7065785","DOIUrl":null,"url":null,"abstract":"Ambient RF energy harvesting becomes one of the potential renewable energies for powering low power electronic devices such as autonomous sensors in wireless sensor networks (WSN). Comparing to other ambient energy sources, RF energy has the lowest density power, although it can be harvested all day and night. Our current research aims to build an RF energy harvesting system prototype using ultra low boost converter for powering wireless sensor network In this paper, our objectives were to report the result of our empirical studies focusing on capability of storage element, rectifier circuit performance and calculation of overall energy consumed by low power device both in active mode and sleep mode. The results show overall power consumption of the low power electronics device with all of its components in an active mode is 381.3 mW and overall required energy per node amount to 70.62 mJ. Supercapacitor energy which can be utilized is 4.5 Joule, ensuring adequatly energy supply to operate the WSN client module.","PeriodicalId":404830,"journal":{"name":"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Empirical studies of wireless sensor network energy consumption for designing RF energy harvesting\",\"authors\":\"E. Utami, Deddy Susilo, Budihardja Murtianta\",\"doi\":\"10.1109/ICITACEE.2014.7065785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambient RF energy harvesting becomes one of the potential renewable energies for powering low power electronic devices such as autonomous sensors in wireless sensor networks (WSN). Comparing to other ambient energy sources, RF energy has the lowest density power, although it can be harvested all day and night. Our current research aims to build an RF energy harvesting system prototype using ultra low boost converter for powering wireless sensor network In this paper, our objectives were to report the result of our empirical studies focusing on capability of storage element, rectifier circuit performance and calculation of overall energy consumed by low power device both in active mode and sleep mode. The results show overall power consumption of the low power electronics device with all of its components in an active mode is 381.3 mW and overall required energy per node amount to 70.62 mJ. Supercapacitor energy which can be utilized is 4.5 Joule, ensuring adequatly energy supply to operate the WSN client module.\",\"PeriodicalId\":404830,\"journal\":{\"name\":\"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITACEE.2014.7065785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITACEE.2014.7065785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Empirical studies of wireless sensor network energy consumption for designing RF energy harvesting
Ambient RF energy harvesting becomes one of the potential renewable energies for powering low power electronic devices such as autonomous sensors in wireless sensor networks (WSN). Comparing to other ambient energy sources, RF energy has the lowest density power, although it can be harvested all day and night. Our current research aims to build an RF energy harvesting system prototype using ultra low boost converter for powering wireless sensor network In this paper, our objectives were to report the result of our empirical studies focusing on capability of storage element, rectifier circuit performance and calculation of overall energy consumed by low power device both in active mode and sleep mode. The results show overall power consumption of the low power electronics device with all of its components in an active mode is 381.3 mW and overall required energy per node amount to 70.62 mJ. Supercapacitor energy which can be utilized is 4.5 Joule, ensuring adequatly energy supply to operate the WSN client module.