同步不确定性感知软件时钟的实验验证

A. Bondavalli, F. Brancati, A. Ceccarelli, M. Vadursi
{"title":"同步不确定性感知软件时钟的实验验证","authors":"A. Bondavalli, F. Brancati, A. Ceccarelli, M. Vadursi","doi":"10.1109/SRDS.2010.35","DOIUrl":null,"url":null,"abstract":"A software clock capable of self-evaluating its synchronization uncertainty is experimentally validated for a specific implementation on a node synchronized through NTP. The validation methodology takes advantage of an external node equipped with a GPS-synchronized clock acting as a reference, which is connected to the node hosting the system under test through a fast Ethernet connection. Experiments are carried out for different values of the software clock parameters and different types of workload, and address the possible occurrence of faults in the system under test and in the NTP synchronization mechanism. The validation methodology is designed to be as less intrusive as possible and to grant a resolution of the order of few hundreds of microseconds. The experimental results show very good performance of R&SAClock, and their analysis gives precious hints for further improvements.","PeriodicalId":219204,"journal":{"name":"2010 29th IEEE Symposium on Reliable Distributed Systems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Experimental Validation of a Synchronization Uncertainty-Aware Software Clock\",\"authors\":\"A. Bondavalli, F. Brancati, A. Ceccarelli, M. Vadursi\",\"doi\":\"10.1109/SRDS.2010.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A software clock capable of self-evaluating its synchronization uncertainty is experimentally validated for a specific implementation on a node synchronized through NTP. The validation methodology takes advantage of an external node equipped with a GPS-synchronized clock acting as a reference, which is connected to the node hosting the system under test through a fast Ethernet connection. Experiments are carried out for different values of the software clock parameters and different types of workload, and address the possible occurrence of faults in the system under test and in the NTP synchronization mechanism. The validation methodology is designed to be as less intrusive as possible and to grant a resolution of the order of few hundreds of microseconds. The experimental results show very good performance of R&SAClock, and their analysis gives precious hints for further improvements.\",\"PeriodicalId\":219204,\"journal\":{\"name\":\"2010 29th IEEE Symposium on Reliable Distributed Systems\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 29th IEEE Symposium on Reliable Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2010.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 29th IEEE Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2010.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

一个软件时钟能够自我评估其同步不确定性实验验证了一个特定的实现上的节点通过NTP同步。验证方法利用配备gps同步时钟作为参考的外部节点,该节点通过快速以太网连接到承载被测系统的节点。针对不同的软件时钟参数值和不同类型的工作负载进行实验,解决被测系统和NTP同步机制中可能出现的故障。验证方法被设计为尽可能减少干扰,并提供几百微秒的分辨率。实验结果表明R&SAClock具有良好的性能,其分析为进一步改进提供了宝贵的提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Validation of a Synchronization Uncertainty-Aware Software Clock
A software clock capable of self-evaluating its synchronization uncertainty is experimentally validated for a specific implementation on a node synchronized through NTP. The validation methodology takes advantage of an external node equipped with a GPS-synchronized clock acting as a reference, which is connected to the node hosting the system under test through a fast Ethernet connection. Experiments are carried out for different values of the software clock parameters and different types of workload, and address the possible occurrence of faults in the system under test and in the NTP synchronization mechanism. The validation methodology is designed to be as less intrusive as possible and to grant a resolution of the order of few hundreds of microseconds. The experimental results show very good performance of R&SAClock, and their analysis gives precious hints for further improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization Based Topology Control for Wireless Ad Hoc Networks to Meet QoS Requirements An Entity-Centric Approach for Privacy and Identity Management in Cloud Computing On-Demand Recovery in Middleware Storage Systems Adaptive Routing Scheme for Emerging Wireless Ad Hoc Networks Diskless Checkpointing with Rollback-Dependency Trackability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1