用于高分辨率信号估计的随机量化传递函数

H. Berndt, H. Jentschel
{"title":"用于高分辨率信号估计的随机量化传递函数","authors":"H. Berndt, H. Jentschel","doi":"10.1109/ICDSP.2002.1028231","DOIUrl":null,"url":null,"abstract":"Scalar signal quantization is commonly based on a deterministic definition of nonlinear transfer functions. However, in the more general case of stochastic quantization a non-deterministic approach is required. This paper presents an analysis of general stochastic quantization properties derived from a model incorporating a regular deterministic quantizer. It is shown how stochastic quantization transfer functions providing constant mean square error independent of the actual probability density distribution of the signal being quantized can be derived. Simulation results illustrating performance and limits of the proposed quantizer are given.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic quantization transfer functions for high resolution signal estimation\",\"authors\":\"H. Berndt, H. Jentschel\",\"doi\":\"10.1109/ICDSP.2002.1028231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalar signal quantization is commonly based on a deterministic definition of nonlinear transfer functions. However, in the more general case of stochastic quantization a non-deterministic approach is required. This paper presents an analysis of general stochastic quantization properties derived from a model incorporating a regular deterministic quantizer. It is shown how stochastic quantization transfer functions providing constant mean square error independent of the actual probability density distribution of the signal being quantized can be derived. Simulation results illustrating performance and limits of the proposed quantizer are given.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

标量信号量化通常基于非线性传递函数的确定性定义。然而,在更一般的随机量化情况下,需要一种非确定性方法。本文分析了一个包含正则确定性量化器的模型的一般随机量化性质。它显示了如何随机量化传递函数提供恒定的均方误差独立于实际的概率密度分布的信号被量化可以导出。仿真结果说明了该量化器的性能和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic quantization transfer functions for high resolution signal estimation
Scalar signal quantization is commonly based on a deterministic definition of nonlinear transfer functions. However, in the more general case of stochastic quantization a non-deterministic approach is required. This paper presents an analysis of general stochastic quantization properties derived from a model incorporating a regular deterministic quantizer. It is shown how stochastic quantization transfer functions providing constant mean square error independent of the actual probability density distribution of the signal being quantized can be derived. Simulation results illustrating performance and limits of the proposed quantizer are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
H/sub /spl infin// bounded optimal updating - down-dating algorithm A systematic approach to seizure prediction using genetic and classifier based feature selection A prognostic-classification system based on a probabilistic NN for predicting urine bladder cancer recurrence Implementation of real-time AMDF pitch-detection for voice gender normalisation Fourier filtering of continuous global surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1