机器学习在自组织无线网络配置管理中的作用

Sung-eok Jeon, C. Ji
{"title":"机器学习在自组织无线网络配置管理中的作用","authors":"Sung-eok Jeon, C. Ji","doi":"10.1145/1080173.1080191","DOIUrl":null,"url":null,"abstract":"In this work, we show that machine learning, e.g., graphical models, plays an important role for the self-configuration of ad hoc wireless network. The role of such a learning approach includes a simple representation of complex dependencies in the network and a distributed algorithm which can adaptively find a nearly optimal configuration.","PeriodicalId":216113,"journal":{"name":"Annual ACM Workshop on Mining Network Data","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Role of machine learning in configuration management of ad hoc wireless networks\",\"authors\":\"Sung-eok Jeon, C. Ji\",\"doi\":\"10.1145/1080173.1080191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we show that machine learning, e.g., graphical models, plays an important role for the self-configuration of ad hoc wireless network. The role of such a learning approach includes a simple representation of complex dependencies in the network and a distributed algorithm which can adaptively find a nearly optimal configuration.\",\"PeriodicalId\":216113,\"journal\":{\"name\":\"Annual ACM Workshop on Mining Network Data\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual ACM Workshop on Mining Network Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1080173.1080191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual ACM Workshop on Mining Network Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1080173.1080191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们证明了机器学习,例如图形模型,在自组织无线网络的自配置中起着重要作用。这种学习方法的作用包括网络中复杂依赖关系的简单表示和可以自适应地找到接近最优配置的分布式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of machine learning in configuration management of ad hoc wireless networks
In this work, we show that machine learning, e.g., graphical models, plays an important role for the self-configuration of ad hoc wireless network. The role of such a learning approach includes a simple representation of complex dependencies in the network and a distributed algorithm which can adaptively find a nearly optimal configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time monitoring of SIP infrastructure using message classification Authentication anomaly detection: a case study on a virtual private network SIP-based VoIP traffic behavior profiling and its applications Comparison of anomaly signal quality in common detection metrics Identifying and tracking suspicious activities through IP gray space analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1