{"title":"基于改进Yagi-Uda天线的射频能量清除双波段整流天线设计","authors":"Randa Elkhosht, H. Hammad","doi":"10.1109/IMAS55807.2023.10066948","DOIUrl":null,"url":null,"abstract":"In this work, a dual band rectenna system is presented for radio frequency energy harvesting. A broadband high gain Yagi-Uda antenna operating at GSM 1800 and 2100 is designed for scavenging radio frequency radiations. The antenna's return loss is below −10 dB over a fractional bandwidth of 28.6% extending from 1.65 till 2.2 GHz. The antenna has a gain of 3.8 dBi and 5.7 dBi at 1.8 and 2.1 GHz respectively. A half wave rectifier using single shunt diode and a matching network using radial stubs were designed and integrated with the proposed antenna forming the rectenna. The proposed rectenna system achieved an output voltage of approximately 0.23V at 1.8 and 2.1 GHz, and an overall efficiency of 28% for an input power of −10dBm, which makes it suitable for powering wireless sensor nodes.","PeriodicalId":246624,"journal":{"name":"2023 International Microwave and Antenna Symposium (IMAS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Dualband Rectenna Design for RF Energy Scavenging using a Modified Yagi-Uda Antenna\",\"authors\":\"Randa Elkhosht, H. Hammad\",\"doi\":\"10.1109/IMAS55807.2023.10066948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a dual band rectenna system is presented for radio frequency energy harvesting. A broadband high gain Yagi-Uda antenna operating at GSM 1800 and 2100 is designed for scavenging radio frequency radiations. The antenna's return loss is below −10 dB over a fractional bandwidth of 28.6% extending from 1.65 till 2.2 GHz. The antenna has a gain of 3.8 dBi and 5.7 dBi at 1.8 and 2.1 GHz respectively. A half wave rectifier using single shunt diode and a matching network using radial stubs were designed and integrated with the proposed antenna forming the rectenna. The proposed rectenna system achieved an output voltage of approximately 0.23V at 1.8 and 2.1 GHz, and an overall efficiency of 28% for an input power of −10dBm, which makes it suitable for powering wireless sensor nodes.\",\"PeriodicalId\":246624,\"journal\":{\"name\":\"2023 International Microwave and Antenna Symposium (IMAS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Microwave and Antenna Symposium (IMAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMAS55807.2023.10066948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Microwave and Antenna Symposium (IMAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAS55807.2023.10066948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dualband Rectenna Design for RF Energy Scavenging using a Modified Yagi-Uda Antenna
In this work, a dual band rectenna system is presented for radio frequency energy harvesting. A broadband high gain Yagi-Uda antenna operating at GSM 1800 and 2100 is designed for scavenging radio frequency radiations. The antenna's return loss is below −10 dB over a fractional bandwidth of 28.6% extending from 1.65 till 2.2 GHz. The antenna has a gain of 3.8 dBi and 5.7 dBi at 1.8 and 2.1 GHz respectively. A half wave rectifier using single shunt diode and a matching network using radial stubs were designed and integrated with the proposed antenna forming the rectenna. The proposed rectenna system achieved an output voltage of approximately 0.23V at 1.8 and 2.1 GHz, and an overall efficiency of 28% for an input power of −10dBm, which makes it suitable for powering wireless sensor nodes.