油棕生物实验室智能RFID系统

N. Aziz, I.A.J. Alias, A. T. Hashim, R. Mustafa, K. Anuar, S. Ahmad, W. Muhamad
{"title":"油棕生物实验室智能RFID系统","authors":"N. Aziz, I.A.J. Alias, A. T. Hashim, R. Mustafa, K. Anuar, S. Ahmad, W. Muhamad","doi":"10.1109/RFM.2008.4897365","DOIUrl":null,"url":null,"abstract":"The tissue culture laboratory provides the oil palm industry with innovations for the production of improved planting materials and information on the molecular biology of tissue culture processes. Research has shown that factors such as temperature, humidity, liquid, phase and gas compositions, are critical in producing quality clonal materials using tissue culture process. Therefore, it is necessary to provide good physical and chemical conditions for production of quality products. Consequently, sensors are required to monitor and record the data in growth room. All sensors will monitor critical parameters that focus on temperature, humidity, oxygen, carbon dioxide, ethylene and also an optical sensor for liquid phase and composition that will be linked to the database and analysis software for storing and analyzing the monitored data. The integrated sensors are low cost because it used local products and low power consumption and fabricated to suit the biological laboratory environment. The purpose of these integrated biotechnology sensors system is to serve as an interface among user, as the disturbance analysis program and an expert system in identifying the disturbance. The system would monitor via a smart RFID telemetry system and provide automatically email or short message (SMS) notifications upon identification of a disturbance module. Radio-frequency identification (RFID) is an automatic wireless identification method using radio waves, relying on storing and remotely retrieving data from integrated sensors using devices called RFID tags or transponders. Some tags can be read from several meters away and beyond the line of sight of the reader which make easier for data transportation. For the best communication path, active RFID tags will be equipped with autonomous networking; which greatly improves the utility of the device. Eventually, this smart RFID technology system could improve the efficiency of inventory tracking and management for oil palm tissue culture growth.","PeriodicalId":329128,"journal":{"name":"2008 IEEE International RF and Microwave Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Smart RFID system for oil palm bio-laboratory\",\"authors\":\"N. Aziz, I.A.J. Alias, A. T. Hashim, R. Mustafa, K. Anuar, S. Ahmad, W. Muhamad\",\"doi\":\"10.1109/RFM.2008.4897365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tissue culture laboratory provides the oil palm industry with innovations for the production of improved planting materials and information on the molecular biology of tissue culture processes. Research has shown that factors such as temperature, humidity, liquid, phase and gas compositions, are critical in producing quality clonal materials using tissue culture process. Therefore, it is necessary to provide good physical and chemical conditions for production of quality products. Consequently, sensors are required to monitor and record the data in growth room. All sensors will monitor critical parameters that focus on temperature, humidity, oxygen, carbon dioxide, ethylene and also an optical sensor for liquid phase and composition that will be linked to the database and analysis software for storing and analyzing the monitored data. The integrated sensors are low cost because it used local products and low power consumption and fabricated to suit the biological laboratory environment. The purpose of these integrated biotechnology sensors system is to serve as an interface among user, as the disturbance analysis program and an expert system in identifying the disturbance. The system would monitor via a smart RFID telemetry system and provide automatically email or short message (SMS) notifications upon identification of a disturbance module. Radio-frequency identification (RFID) is an automatic wireless identification method using radio waves, relying on storing and remotely retrieving data from integrated sensors using devices called RFID tags or transponders. Some tags can be read from several meters away and beyond the line of sight of the reader which make easier for data transportation. For the best communication path, active RFID tags will be equipped with autonomous networking; which greatly improves the utility of the device. Eventually, this smart RFID technology system could improve the efficiency of inventory tracking and management for oil palm tissue culture growth.\",\"PeriodicalId\":329128,\"journal\":{\"name\":\"2008 IEEE International RF and Microwave Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International RF and Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFM.2008.4897365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International RF and Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM.2008.4897365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

组织培养实验室为油棕产业提供生产改良种植材料的创新和组织培养过程的分子生物学信息。研究表明,温度、湿度、液体、相和气体组成等因素对于使用组织培养工艺生产优质克隆材料至关重要。因此,为生产优质产品提供良好的物理和化学条件是必要的。因此,需要传感器来监测和记录生长室内的数据。所有传感器都将监测关键参数,重点是温度、湿度、氧气、二氧化碳、乙烯,还有一个用于液相和成分的光学传感器,该传感器将连接到数据库和分析软件,用于存储和分析监测数据。该集成传感器采用本地产品,功耗低,适合生物实验室环境,成本低。这些集成的生物技术传感器系统的目的是作为用户之间的接口,作为干扰分析程序和识别干扰的专家系统。该系统将通过智能RFID遥测系统进行监控,并在识别干扰模块时自动提供电子邮件或短消息(SMS)通知。射频识别(RFID)是一种使用无线电波的自动无线识别方法,依靠使用称为RFID标签或应答器的设备从集成传感器存储和远程检索数据。一些标签可以从几米远的地方读取,超出阅读器的视线,这使得数据传输更容易。为了获得最佳的通信路径,有源RFID标签将配备自主网络;这大大提高了设备的实用性。最终,这种智能RFID技术系统可以提高油棕组织培养生长的库存跟踪和管理效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart RFID system for oil palm bio-laboratory
The tissue culture laboratory provides the oil palm industry with innovations for the production of improved planting materials and information on the molecular biology of tissue culture processes. Research has shown that factors such as temperature, humidity, liquid, phase and gas compositions, are critical in producing quality clonal materials using tissue culture process. Therefore, it is necessary to provide good physical and chemical conditions for production of quality products. Consequently, sensors are required to monitor and record the data in growth room. All sensors will monitor critical parameters that focus on temperature, humidity, oxygen, carbon dioxide, ethylene and also an optical sensor for liquid phase and composition that will be linked to the database and analysis software for storing and analyzing the monitored data. The integrated sensors are low cost because it used local products and low power consumption and fabricated to suit the biological laboratory environment. The purpose of these integrated biotechnology sensors system is to serve as an interface among user, as the disturbance analysis program and an expert system in identifying the disturbance. The system would monitor via a smart RFID telemetry system and provide automatically email or short message (SMS) notifications upon identification of a disturbance module. Radio-frequency identification (RFID) is an automatic wireless identification method using radio waves, relying on storing and remotely retrieving data from integrated sensors using devices called RFID tags or transponders. Some tags can be read from several meters away and beyond the line of sight of the reader which make easier for data transportation. For the best communication path, active RFID tags will be equipped with autonomous networking; which greatly improves the utility of the device. Eventually, this smart RFID technology system could improve the efficiency of inventory tracking and management for oil palm tissue culture growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dielectric resonator antenna (DRA) for wireless application Design of split ring resonator filters for interference suppression in UWB Robust UWB Radar object recognition Enhanced lightweight medium access protocol with adaptive multi-timeslot allocation for wireless sensor network Comparison between circular array and linear array microstrip antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1