利用遗传算法求解悬挂相关性

Ashutosh Kumar Singh, K. P. Ravi, A. G. K. Leng
{"title":"利用遗传算法求解悬挂相关性","authors":"Ashutosh Kumar Singh, K. P. Ravi, A. G. K. Leng","doi":"10.1109/URKE.2012.6319593","DOIUrl":null,"url":null,"abstract":"Continuous growth of hanging pages with Web makes a significant problem for ranking in the information retrieval. Exclusion of these pages in ranking calculation can give biased/inconsistent result. On the other hand inclusion of these pages will reduce the speed significantly. However most of the IR ranking algorithms exclude the hanging pages. But there are relevant and important hanging pages on the Web and they cannot be ignored because of the complexity in computation and time. In our proposed method, we include the relevant hanging pages in the ranking. Relevancy or non-relevancy of hanging pages is achieved by application of Genetic Algorithm (GA).","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solving hanging relevancy using genetic algorithm\",\"authors\":\"Ashutosh Kumar Singh, K. P. Ravi, A. G. K. Leng\",\"doi\":\"10.1109/URKE.2012.6319593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous growth of hanging pages with Web makes a significant problem for ranking in the information retrieval. Exclusion of these pages in ranking calculation can give biased/inconsistent result. On the other hand inclusion of these pages will reduce the speed significantly. However most of the IR ranking algorithms exclude the hanging pages. But there are relevant and important hanging pages on the Web and they cannot be ignored because of the complexity in computation and time. In our proposed method, we include the relevant hanging pages in the ranking. Relevancy or non-relevancy of hanging pages is achieved by application of Genetic Algorithm (GA).\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着Web页面的不断增加,信息检索中的排名问题日益突出。在排名计算中排除这些页面可能会给出有偏差/不一致的结果。另一方面,包含这些页面将显著降低速度。然而,大多数IR排名算法都排除了挂页。但由于计算量和时间的复杂性,网络上存在着一些重要的相关挂页,不容忽视。在我们提出的方法中,我们将相关的挂页包含在排名中。应用遗传算法实现挂页的相关性和非相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving hanging relevancy using genetic algorithm
Continuous growth of hanging pages with Web makes a significant problem for ranking in the information retrieval. Exclusion of these pages in ranking calculation can give biased/inconsistent result. On the other hand inclusion of these pages will reduce the speed significantly. However most of the IR ranking algorithms exclude the hanging pages. But there are relevant and important hanging pages on the Web and they cannot be ignored because of the complexity in computation and time. In our proposed method, we include the relevant hanging pages in the ranking. Relevancy or non-relevancy of hanging pages is achieved by application of Genetic Algorithm (GA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driving system stability analysis and improving of IPMSM Bayesian network structure learning for discrete and continuous variables Development of genetic algorithm on multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system Inter-transaction association rule mining in the Indonesia stock exchange market Extreme graphs with given order and edge-neighbor-scattering number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1