基于序列广义k均值(SGK)的稀疏表示图像去噪

S. K. Sahoo, A. Makur
{"title":"基于序列广义k均值(SGK)的稀疏表示图像去噪","authors":"S. K. Sahoo, A. Makur","doi":"10.1109/ICICS.2013.6782831","DOIUrl":null,"url":null,"abstract":"We have recently proposed a Sequential Generalization of K-means (SGK) to train dictionary for sparse representation. SGK's training performance is as effective as the standard dictionary training algorithm K-SVD, alongside it has a simpler implementation to its advantage. In this piece of work, through the problem of image denoising, we are making a fair comparison between the usability of SGK and K-SVD. The obtained results suggest that we can successfully replace K-SVD with SGK, due to its quicker execution and comparable outcomes. Similarly, it is possible to extend the use of SGK to other applications of sparse representation.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Image denoising via sparse representations over Sequential Generalization of K-means (SGK)\",\"authors\":\"S. K. Sahoo, A. Makur\",\"doi\":\"10.1109/ICICS.2013.6782831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have recently proposed a Sequential Generalization of K-means (SGK) to train dictionary for sparse representation. SGK's training performance is as effective as the standard dictionary training algorithm K-SVD, alongside it has a simpler implementation to its advantage. In this piece of work, through the problem of image denoising, we are making a fair comparison between the usability of SGK and K-SVD. The obtained results suggest that we can successfully replace K-SVD with SGK, due to its quicker execution and comparable outcomes. Similarly, it is possible to extend the use of SGK to other applications of sparse representation.\",\"PeriodicalId\":184544,\"journal\":{\"name\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2013.6782831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们最近提出了一种k均值序列泛化(SGK)方法来训练字典的稀疏表示。SGK的训练性能与标准字典训练算法K-SVD一样有效,同时它具有更简单的实现优势。在这项工作中,通过图像去噪问题,我们对SGK和K-SVD的可用性进行了公平的比较。所获得的结果表明,我们可以成功地用SGK代替K-SVD,因为它的执行速度更快,结果相似。类似地,可以将SGK的使用扩展到其他稀疏表示的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image denoising via sparse representations over Sequential Generalization of K-means (SGK)
We have recently proposed a Sequential Generalization of K-means (SGK) to train dictionary for sparse representation. SGK's training performance is as effective as the standard dictionary training algorithm K-SVD, alongside it has a simpler implementation to its advantage. In this piece of work, through the problem of image denoising, we are making a fair comparison between the usability of SGK and K-SVD. The obtained results suggest that we can successfully replace K-SVD with SGK, due to its quicker execution and comparable outcomes. Similarly, it is possible to extend the use of SGK to other applications of sparse representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cubic-based 3-D localization for wireless sensor networks Using PCA algorithm to refine the results of internet traffic identification Recognizing trees at a distance with discriminative deep feature learning A random increasing sequence hash chain and smart card-based remote user authentication scheme Two dimension nonnegative partial least squares for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1