多流分类的并行长短期记忆

Mohamed Bouaziz, Mohamed Morchid, Richard Dufour, G. Linarès, R. Mori
{"title":"多流分类的并行长短期记忆","authors":"Mohamed Bouaziz, Mohamed Morchid, Richard Dufour, G. Linarès, R. Mori","doi":"10.1109/SLT.2016.7846268","DOIUrl":null,"url":null,"abstract":"Recently, machine learning methods have provided a broad spectrum of original and efficient algorithms based on Deep Neural Networks (DNN) to automatically predict an outcome with respect to a sequence of inputs. Recurrent hidden cells allow these DNN-based models to manage long-term dependencies such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM). Nevertheless, these RNNs process a single input stream in one (LSTM) or two (Bidirectional LSTM) directions. But most of the information available nowadays is from multistreams or multimedia documents, and require RNNs to process these information synchronously during the training. This paper presents an original LSTM-based architecture, named Parallel LSTM (PLSTM), that carries out multiple parallel synchronized input sequences in order to predict a common output. The proposed PLSTM method could be used for parallel sequence classification purposes. The PLSTM approach is evaluated on an automatic telecast genre sequences classification task and compared with different state-of-the-art architectures. Results show that the proposed PLSTM method outperforms the baseline n-gram models as well as the state-of-the-art LSTM approach.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Parallel Long Short-Term Memory for multi-stream classification\",\"authors\":\"Mohamed Bouaziz, Mohamed Morchid, Richard Dufour, G. Linarès, R. Mori\",\"doi\":\"10.1109/SLT.2016.7846268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, machine learning methods have provided a broad spectrum of original and efficient algorithms based on Deep Neural Networks (DNN) to automatically predict an outcome with respect to a sequence of inputs. Recurrent hidden cells allow these DNN-based models to manage long-term dependencies such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM). Nevertheless, these RNNs process a single input stream in one (LSTM) or two (Bidirectional LSTM) directions. But most of the information available nowadays is from multistreams or multimedia documents, and require RNNs to process these information synchronously during the training. This paper presents an original LSTM-based architecture, named Parallel LSTM (PLSTM), that carries out multiple parallel synchronized input sequences in order to predict a common output. The proposed PLSTM method could be used for parallel sequence classification purposes. The PLSTM approach is evaluated on an automatic telecast genre sequences classification task and compared with different state-of-the-art architectures. Results show that the proposed PLSTM method outperforms the baseline n-gram models as well as the state-of-the-art LSTM approach.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

最近,机器学习方法提供了广泛的基于深度神经网络(DNN)的原始和高效算法,以自动预测相对于输入序列的结果。循环隐藏细胞允许这些基于dnn的模型管理长期依赖,如循环神经网络(RNN)和长短期记忆(LSTM)。然而,这些rnn在一个(LSTM)或两个(双向LSTM)方向上处理单个输入流。但目前大多数可用的信息来自多流或多媒体文档,并且要求rnn在训练过程中同步处理这些信息。本文提出了一种基于LSTM的原始体系结构,称为并行LSTM (PLSTM),它执行多个并行同步输入序列以预测公共输出。所提出的PLSTM方法可用于并行序列分类。在一个电视节目类型序列自动分类任务中对PLSTM方法进行了评估,并与不同的最先进的体系结构进行了比较。结果表明,所提出的PLSTM方法优于基线n-gram模型以及最先进的LSTM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Long Short-Term Memory for multi-stream classification
Recently, machine learning methods have provided a broad spectrum of original and efficient algorithms based on Deep Neural Networks (DNN) to automatically predict an outcome with respect to a sequence of inputs. Recurrent hidden cells allow these DNN-based models to manage long-term dependencies such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM). Nevertheless, these RNNs process a single input stream in one (LSTM) or two (Bidirectional LSTM) directions. But most of the information available nowadays is from multistreams or multimedia documents, and require RNNs to process these information synchronously during the training. This paper presents an original LSTM-based architecture, named Parallel LSTM (PLSTM), that carries out multiple parallel synchronized input sequences in order to predict a common output. The proposed PLSTM method could be used for parallel sequence classification purposes. The PLSTM approach is evaluated on an automatic telecast genre sequences classification task and compared with different state-of-the-art architectures. Results show that the proposed PLSTM method outperforms the baseline n-gram models as well as the state-of-the-art LSTM approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1