{"title":"物种的迭代囚徒困境","authors":"P. Hingston","doi":"10.1109/CIG.2009.5286498","DOIUrl":null,"url":null,"abstract":"The Iterated Prisoner's Dilemma (IPD) is widely used to study the evolution of cooperation between self-interested agents. Existing work asks how genes that code for cooperation arise and spread through a single-species population of IPD playing agents. In this paper, we focus on competition between different species of agents. Making this distinction allows us to separate and examine macroevolutionary phenomena. We illustrate with some species-level simulation experiments with agents that use well-known strategies, and with species of agents that use team strategies.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Iterated Prisoner's Dilemma for species\",\"authors\":\"P. Hingston\",\"doi\":\"10.1109/CIG.2009.5286498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Iterated Prisoner's Dilemma (IPD) is widely used to study the evolution of cooperation between self-interested agents. Existing work asks how genes that code for cooperation arise and spread through a single-species population of IPD playing agents. In this paper, we focus on competition between different species of agents. Making this distinction allows us to separate and examine macroevolutionary phenomena. We illustrate with some species-level simulation experiments with agents that use well-known strategies, and with species of agents that use team strategies.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Iterated Prisoner's Dilemma (IPD) is widely used to study the evolution of cooperation between self-interested agents. Existing work asks how genes that code for cooperation arise and spread through a single-species population of IPD playing agents. In this paper, we focus on competition between different species of agents. Making this distinction allows us to separate and examine macroevolutionary phenomena. We illustrate with some species-level simulation experiments with agents that use well-known strategies, and with species of agents that use team strategies.