利用红外热成像技术测量和分析手持移动电话产生的温升

A. Rusnani, N. Norsuzila
{"title":"利用红外热成像技术测量和分析手持移动电话产生的温升","authors":"A. Rusnani, N. Norsuzila","doi":"10.1109/RFM.2008.4897449","DOIUrl":null,"url":null,"abstract":"With the increase in the number of commercial mobile phones available and the longer periods these products are used in close proximity to the human body, concern has grown about the possible health hazard from exposure to RF electromagnetic radiation (EMR). Mobile phone users often complain about burning sensations or heating of the ear region. The increase in temperature may due to thermal insulation by the phone, conduction of the heat produced in the phone by battery currents and running of the radio frequency (RF) electronic circuits, and electromagnetic field (EMF) energy absorbed by the user's head. This study investigates local heating effects of the skin region including ear-skull area that handheld mobile phones can cause in humans. The goal is to visualize, quantify, and compare these thermal effects in various parameters condition and subjects using different commercial mobile phones in the normal contact position during standardized conversations. Infrared thermal imaging was used in this measurement and investigation. It is well suited to investigate temperature rises of the side of the face or the ear-skull region when using handheld mobile phones because it is able to accurately measure two-dimensional (2D) temperature fields with high thermal, temporal, and spatial resolutions Thermal imaging camera is capable of measuring local temperatures directly, as opposed to other methods, which can only derive temperatures if the electromagnetic near-field pattern of the phone, the energy-absorbing tissue properties, and the blood-flow situation are exactly known. The strength of local temperature rises is an indicator of the total exposure related to radiofrequency electromagnetic radiation from the mobile phone. Group of female subjects were used as samples. These subjects were requested to make a phone call on a standardized tone. Two different time durations were allocated to see the difference in the temperature rise. After 15 minutes of conversation, the mobile phone was removed to acquire thermal image on the right and left sides of ear-skull area. Then, the conversation was continued for another 15 minutes and the images for the same area were captured again. The temperature for both, the ear-skull area and temperature of the mobile front surface were captured after 30 minutes exposure to see the thermal equilibrium between these two temperatures. The entire captured images were collected and analyzed. It is shown in this study that different commercially available handheld mobile phones can cause very different thermal effects under identical experimental conditions. The measurement results are expected to help consumers in choosing those phones that cause the least thermal influences and biological effects. They might also help change the phone user's behavior in order to minimize the exposure to electromagnetic radiation.","PeriodicalId":329128,"journal":{"name":"2008 IEEE International RF and Microwave Conference","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Measurement and analysis of temperature rise caused by handheld mobile telephones using infrared thermal imaging\",\"authors\":\"A. Rusnani, N. Norsuzila\",\"doi\":\"10.1109/RFM.2008.4897449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase in the number of commercial mobile phones available and the longer periods these products are used in close proximity to the human body, concern has grown about the possible health hazard from exposure to RF electromagnetic radiation (EMR). Mobile phone users often complain about burning sensations or heating of the ear region. The increase in temperature may due to thermal insulation by the phone, conduction of the heat produced in the phone by battery currents and running of the radio frequency (RF) electronic circuits, and electromagnetic field (EMF) energy absorbed by the user's head. This study investigates local heating effects of the skin region including ear-skull area that handheld mobile phones can cause in humans. The goal is to visualize, quantify, and compare these thermal effects in various parameters condition and subjects using different commercial mobile phones in the normal contact position during standardized conversations. Infrared thermal imaging was used in this measurement and investigation. It is well suited to investigate temperature rises of the side of the face or the ear-skull region when using handheld mobile phones because it is able to accurately measure two-dimensional (2D) temperature fields with high thermal, temporal, and spatial resolutions Thermal imaging camera is capable of measuring local temperatures directly, as opposed to other methods, which can only derive temperatures if the electromagnetic near-field pattern of the phone, the energy-absorbing tissue properties, and the blood-flow situation are exactly known. The strength of local temperature rises is an indicator of the total exposure related to radiofrequency electromagnetic radiation from the mobile phone. Group of female subjects were used as samples. These subjects were requested to make a phone call on a standardized tone. Two different time durations were allocated to see the difference in the temperature rise. After 15 minutes of conversation, the mobile phone was removed to acquire thermal image on the right and left sides of ear-skull area. Then, the conversation was continued for another 15 minutes and the images for the same area were captured again. The temperature for both, the ear-skull area and temperature of the mobile front surface were captured after 30 minutes exposure to see the thermal equilibrium between these two temperatures. The entire captured images were collected and analyzed. It is shown in this study that different commercially available handheld mobile phones can cause very different thermal effects under identical experimental conditions. The measurement results are expected to help consumers in choosing those phones that cause the least thermal influences and biological effects. They might also help change the phone user's behavior in order to minimize the exposure to electromagnetic radiation.\",\"PeriodicalId\":329128,\"journal\":{\"name\":\"2008 IEEE International RF and Microwave Conference\",\"volume\":\"364 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International RF and Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFM.2008.4897449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International RF and Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM.2008.4897449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

随着商用移动电话数量的增加以及这些产品与人体近距离使用的时间越来越长,人们越来越关注射频电磁辐射暴露可能对健康造成的危害。手机用户经常抱怨耳部有灼烧感或发热感。温度升高可能是由于手机的隔热、电池电流和射频(RF)电子电路的运行在手机中产生的热量的传导,以及用户头部吸收的电磁场(EMF)能量。本研究调查了包括耳-头骨区域在内的皮肤区域的局部发热效应,手持移动电话可以在人类中引起。目标是可视化、量化和比较这些热效应在不同参数条件下和受试者使用不同的商用手机在标准对话中的正常接触位置。红外热成像技术用于测量和研究。当使用手持移动电话时,它非常适合调查面部侧面或耳-头骨区域的温升,因为它能够精确测量具有高热、时间和空间分辨率的二维(2D)温度场,热像仪能够直接测量局部温度,而不是其他方法,只有在手机的电磁近场模式下才能获得温度。吸收能量的组织特性和血液流动情况都是已知的。局部温度上升的强度是与移动电话射频电磁辐射有关的总暴露量的指标。以一组女性受试者为样本。这些受试者被要求用一种标准的语调打电话。分配了两个不同的持续时间来观察温升的差异。对话15分钟后,取下手机,获取左右耳颅区热像图。然后,对话继续进行15分钟,并再次捕获同一区域的图像。在暴露30分钟后,捕获耳-头骨区域的温度和活动前表面的温度,以观察这两个温度之间的热平衡。收集并分析了所有捕获的图像。本研究表明,在相同的实验条件下,不同的市售手持手机会产生非常不同的热效应。该测量结果有望帮助消费者选择产生最小热影响和生物效应的手机。它们也可能有助于改变手机用户的行为,以尽量减少电磁辐射的暴露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement and analysis of temperature rise caused by handheld mobile telephones using infrared thermal imaging
With the increase in the number of commercial mobile phones available and the longer periods these products are used in close proximity to the human body, concern has grown about the possible health hazard from exposure to RF electromagnetic radiation (EMR). Mobile phone users often complain about burning sensations or heating of the ear region. The increase in temperature may due to thermal insulation by the phone, conduction of the heat produced in the phone by battery currents and running of the radio frequency (RF) electronic circuits, and electromagnetic field (EMF) energy absorbed by the user's head. This study investigates local heating effects of the skin region including ear-skull area that handheld mobile phones can cause in humans. The goal is to visualize, quantify, and compare these thermal effects in various parameters condition and subjects using different commercial mobile phones in the normal contact position during standardized conversations. Infrared thermal imaging was used in this measurement and investigation. It is well suited to investigate temperature rises of the side of the face or the ear-skull region when using handheld mobile phones because it is able to accurately measure two-dimensional (2D) temperature fields with high thermal, temporal, and spatial resolutions Thermal imaging camera is capable of measuring local temperatures directly, as opposed to other methods, which can only derive temperatures if the electromagnetic near-field pattern of the phone, the energy-absorbing tissue properties, and the blood-flow situation are exactly known. The strength of local temperature rises is an indicator of the total exposure related to radiofrequency electromagnetic radiation from the mobile phone. Group of female subjects were used as samples. These subjects were requested to make a phone call on a standardized tone. Two different time durations were allocated to see the difference in the temperature rise. After 15 minutes of conversation, the mobile phone was removed to acquire thermal image on the right and left sides of ear-skull area. Then, the conversation was continued for another 15 minutes and the images for the same area were captured again. The temperature for both, the ear-skull area and temperature of the mobile front surface were captured after 30 minutes exposure to see the thermal equilibrium between these two temperatures. The entire captured images were collected and analyzed. It is shown in this study that different commercially available handheld mobile phones can cause very different thermal effects under identical experimental conditions. The measurement results are expected to help consumers in choosing those phones that cause the least thermal influences and biological effects. They might also help change the phone user's behavior in order to minimize the exposure to electromagnetic radiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dielectric resonator antenna (DRA) for wireless application Design of split ring resonator filters for interference suppression in UWB Robust UWB Radar object recognition Enhanced lightweight medium access protocol with adaptive multi-timeslot allocation for wireless sensor network Comparison between circular array and linear array microstrip antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1