烟花图像分类与深度学习

C. Chang, Hsin-Ming Tseng, H. Chu
{"title":"烟花图像分类与深度学习","authors":"C. Chang, Hsin-Ming Tseng, H. Chu","doi":"10.1109/taai54685.2021.00067","DOIUrl":null,"url":null,"abstract":"Before the advent of deep learning, traditional image recognition used algorithms to find features and then classify images using classical machine learning algorithms. But it is difficult to define features for variable types of images. Instead, Representation learning is a way to allow a system to discover the representations of feature for image processing. Deep-learning algorithms attempt to learn multiple levels of representation and play the key role of modern Representation learning. When deep learning neural networks recognize images, the shallow layers usually extract lower-level features, then start with intermediate-level features, and finally the full images. This study uses CNN (Convolutional Neural Network) to classify fireworks images, and the trained modules are used to evaluate the accuracy and suitability.","PeriodicalId":343821,"journal":{"name":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fireworks Image Classification with Deep Learning\",\"authors\":\"C. Chang, Hsin-Ming Tseng, H. Chu\",\"doi\":\"10.1109/taai54685.2021.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Before the advent of deep learning, traditional image recognition used algorithms to find features and then classify images using classical machine learning algorithms. But it is difficult to define features for variable types of images. Instead, Representation learning is a way to allow a system to discover the representations of feature for image processing. Deep-learning algorithms attempt to learn multiple levels of representation and play the key role of modern Representation learning. When deep learning neural networks recognize images, the shallow layers usually extract lower-level features, then start with intermediate-level features, and finally the full images. This study uses CNN (Convolutional Neural Network) to classify fireworks images, and the trained modules are used to evaluate the accuracy and suitability.\",\"PeriodicalId\":343821,\"journal\":{\"name\":\"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/taai54685.2021.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/taai54685.2021.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在深度学习出现之前,传统的图像识别使用算法找到特征,然后使用经典的机器学习算法对图像进行分类。但是对于不同类型的图像,很难定义特征。相反,表征学习是一种允许系统发现用于图像处理的特征表征的方法。深度学习算法试图学习多层次的表示,并在现代表示学习中发挥关键作用。当深度学习神经网络识别图像时,通常是浅层提取较低级的特征,然后从中级特征开始,最后提取完整的图像。本研究使用CNN(卷积神经网络)对烟花图像进行分类,并使用训练好的模块来评估准确率和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fireworks Image Classification with Deep Learning
Before the advent of deep learning, traditional image recognition used algorithms to find features and then classify images using classical machine learning algorithms. But it is difficult to define features for variable types of images. Instead, Representation learning is a way to allow a system to discover the representations of feature for image processing. Deep-learning algorithms attempt to learn multiple levels of representation and play the key role of modern Representation learning. When deep learning neural networks recognize images, the shallow layers usually extract lower-level features, then start with intermediate-level features, and finally the full images. This study uses CNN (Convolutional Neural Network) to classify fireworks images, and the trained modules are used to evaluate the accuracy and suitability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Random Forests and Decision Trees to Predict Viewing Game Live Streaming via Viewers’ Comments [Title page iii] An Automatic Response System based on Multi-layer Perceptual Neural Network and Web Crawler MLNN: A Novel Network Intrusion Detection Based on Multilayer Neural Network A Hybrid Deep Learning Network for Long-Term Travel Time Prediction in Freeways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1