SpecAugment对自动说话人验证系统的影响

M. Faisal, S. Suyanto
{"title":"SpecAugment对自动说话人验证系统的影响","authors":"M. Faisal, S. Suyanto","doi":"10.1109/ISRITI48646.2019.9034603","DOIUrl":null,"url":null,"abstract":"An automatic speaker verification (ASV) is one of the challenging problem in speech processing since there are so many models of machine learnings those capable of synthesizing a fake speech from a given text. This paper discusses the impact of SpecAugment to methods such as Gaussian Mixture Models (GMM) and Deep Neural Networks (DNNs). Some experiments on a speech dataset sampled from the ASVSpoof2019, which is specially made to tackle the threat of spoofing, show that DNNs produces an Equal Error Rate (EER) of 18.1% that is better than the GMM system with EER of 19.0%. And after combining with a traditional augmentation technique, the DNNs also gives a better EER of 15.3% than GMM with EER of 15.7%.","PeriodicalId":367363,"journal":{"name":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"SpecAugment Impact on Automatic Speaker Verification System\",\"authors\":\"M. Faisal, S. Suyanto\",\"doi\":\"10.1109/ISRITI48646.2019.9034603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automatic speaker verification (ASV) is one of the challenging problem in speech processing since there are so many models of machine learnings those capable of synthesizing a fake speech from a given text. This paper discusses the impact of SpecAugment to methods such as Gaussian Mixture Models (GMM) and Deep Neural Networks (DNNs). Some experiments on a speech dataset sampled from the ASVSpoof2019, which is specially made to tackle the threat of spoofing, show that DNNs produces an Equal Error Rate (EER) of 18.1% that is better than the GMM system with EER of 19.0%. And after combining with a traditional augmentation technique, the DNNs also gives a better EER of 15.3% than GMM with EER of 15.7%.\",\"PeriodicalId\":367363,\"journal\":{\"name\":\"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISRITI48646.2019.9034603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI48646.2019.9034603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

自动说话人验证(ASV)是语音处理中具有挑战性的问题之一,因为有很多机器学习模型能够从给定文本合成假语音。本文讨论了SpecAugment对高斯混合模型(GMM)和深度神经网络(dnn)等方法的影响。在ASVSpoof2019(专门用于解决欺骗威胁)中采样的语音数据集上的一些实验表明,DNNs产生的相等错误率(EER)为18.1%,优于EER为19.0%的GMM系统。与传统增强技术相结合后,dnn的识别率为15.3%,优于GMM的15.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpecAugment Impact on Automatic Speaker Verification System
An automatic speaker verification (ASV) is one of the challenging problem in speech processing since there are so many models of machine learnings those capable of synthesizing a fake speech from a given text. This paper discusses the impact of SpecAugment to methods such as Gaussian Mixture Models (GMM) and Deep Neural Networks (DNNs). Some experiments on a speech dataset sampled from the ASVSpoof2019, which is specially made to tackle the threat of spoofing, show that DNNs produces an Equal Error Rate (EER) of 18.1% that is better than the GMM system with EER of 19.0%. And after combining with a traditional augmentation technique, the DNNs also gives a better EER of 15.3% than GMM with EER of 15.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TrendiTex: An Intelligent Fashion Designer Pair Extraction of Aspect and Implicit Opinion Word based on its Co-occurrence in Corpus of Bahasa Indonesia Parameter Tuning of G-mapping SLAM (Simultaneous Localization and Mapping) on Mobile Robot with Laser-Range Finder 360° Sensor ISRITI 2019 Committees Network Architecture Design of Indonesia Research and Education Network (IDREN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1