高效计算特征多项式

J. Dumas, Clément Pernet, Z. Wan
{"title":"高效计算特征多项式","authors":"J. Dumas, Clément Pernet, Z. Wan","doi":"10.1145/1073884.1073905","DOIUrl":null,"url":null,"abstract":"We deal with the computation of the characteristic polynomial of dense matrices over word size finite fields and over the integers. We first present two algorithms for finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"382 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Efficient computation of the characteristic polynomial\",\"authors\":\"J. Dumas, Clément Pernet, Z. Wan\",\"doi\":\"10.1145/1073884.1073905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deal with the computation of the characteristic polynomial of dense matrices over word size finite fields and over the integers. We first present two algorithms for finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"382 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

我们处理了字长有限域和整数上密集矩阵特征多项式的计算。我们首先提出了两种有限域的算法:一种是基于Krylov迭代和高斯消去。我们将其与Keller-Gehrig第二种算法的改进进行了比较。然后我们证明了Keller-Gehrig的第三种算法的推广可以提高复杂度和计算时间。我们将这些结果作为计算整数矩阵特征多项式的基础。我们首先对密集矩阵使用了早终止和中文余数。然后,基于整数最小多项式和Hensel分解的概率方法特别适合于稀疏和/或结构化矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient computation of the characteristic polynomial
We deal with the computation of the characteristic polynomial of dense matrices over word size finite fields and over the integers. We first present two algorithms for finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A view on the future of symbolic computation Solving second order linear differential equations with Klein's theorem Partial degree formulae for rational algebraic surfaces A procedure for proving special function inequalities involving a discrete parameter Fast algorithms for polynomial solutions of linear differential equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1