分布式网络中基于零知识证明的安全数字服务支付

M. Harikrishnan, K. Lakshmy
{"title":"分布式网络中基于零知识证明的安全数字服务支付","authors":"M. Harikrishnan, K. Lakshmy","doi":"10.1109/ICACCS.2019.8728462","DOIUrl":null,"url":null,"abstract":"Performing a fair exchange without a Trusted Third Party (TTP) was considered to be impossible. With multi party computation and practices like Proof-of-Work (PoW), blockchain accomplishes a fair exchange in a trustless network. Data confidentiality is a key challenge that has to be resolved before adopting blockchain for enterprise applications where tokenized assets will be transferred. Protocols like Zcash are already providing the same for financial transactions but lacks flexibility required to apply in most of the potential use cases of blockchain. Most of the real world application work in a way where a transaction is carried out when a particular action is performed. Also, the zero knowledge proof method used in Zcash, ZKSNARK has certain weaknesses restricting its adoption. One of the major drawbacks of ZKSNARK is that it requires an initial trust setup phase which is difficult to achieve in blockchain ecosystem. ZKSTARK, an interactive zero knowledge proof does not require this phase and also provides security against post quantum attacks. We propose a system that uses two indistinguishable hash functions along with ZKSTARK to improve the flexibility of blockchain platforms. The two indistinguishable hash functions are chosen from SHA3-finalists based on their security, performance and inner designs.","PeriodicalId":249139,"journal":{"name":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Secure Digital Service Payments using Zero Knowledge Proof in Distributed Network\",\"authors\":\"M. Harikrishnan, K. Lakshmy\",\"doi\":\"10.1109/ICACCS.2019.8728462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing a fair exchange without a Trusted Third Party (TTP) was considered to be impossible. With multi party computation and practices like Proof-of-Work (PoW), blockchain accomplishes a fair exchange in a trustless network. Data confidentiality is a key challenge that has to be resolved before adopting blockchain for enterprise applications where tokenized assets will be transferred. Protocols like Zcash are already providing the same for financial transactions but lacks flexibility required to apply in most of the potential use cases of blockchain. Most of the real world application work in a way where a transaction is carried out when a particular action is performed. Also, the zero knowledge proof method used in Zcash, ZKSNARK has certain weaknesses restricting its adoption. One of the major drawbacks of ZKSNARK is that it requires an initial trust setup phase which is difficult to achieve in blockchain ecosystem. ZKSTARK, an interactive zero knowledge proof does not require this phase and also provides security against post quantum attacks. We propose a system that uses two indistinguishable hash functions along with ZKSTARK to improve the flexibility of blockchain platforms. The two indistinguishable hash functions are chosen from SHA3-finalists based on their security, performance and inner designs.\",\"PeriodicalId\":249139,\"journal\":{\"name\":\"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCS.2019.8728462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS.2019.8728462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在没有可信第三方(TTP)的情况下进行公平交换被认为是不可能的。通过多方计算和工作量证明(PoW)等实践,区块链在无信任网络中实现了公平交换。数据保密性是一个关键的挑战,在将区块链用于企业应用程序之前,必须解决这个挑战,因为企业应用程序将转移标记化的资产。像Zcash这样的协议已经为金融交易提供了相同的功能,但缺乏在大多数区块链潜在用例中应用所需的灵活性。大多数实际应用程序的工作方式都是在执行特定操作时执行事务。此外,Zcash, ZKSNARK中使用的零知识证明方法也存在一定的弱点,限制了其采用。ZKSNARK的主要缺点之一是它需要初始信任建立阶段,这在区块链生态系统中很难实现。ZKSTARK是一种交互式零知识证明,不需要这个阶段,还提供了针对后量子攻击的安全性。我们提出了一个使用两个不可区分的哈希函数和ZKSTARK的系统,以提高区块链平台的灵活性。这两个难以区分的哈希函数是根据其安全性、性能和内部设计从sha3决赛中选择的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure Digital Service Payments using Zero Knowledge Proof in Distributed Network
Performing a fair exchange without a Trusted Third Party (TTP) was considered to be impossible. With multi party computation and practices like Proof-of-Work (PoW), blockchain accomplishes a fair exchange in a trustless network. Data confidentiality is a key challenge that has to be resolved before adopting blockchain for enterprise applications where tokenized assets will be transferred. Protocols like Zcash are already providing the same for financial transactions but lacks flexibility required to apply in most of the potential use cases of blockchain. Most of the real world application work in a way where a transaction is carried out when a particular action is performed. Also, the zero knowledge proof method used in Zcash, ZKSNARK has certain weaknesses restricting its adoption. One of the major drawbacks of ZKSNARK is that it requires an initial trust setup phase which is difficult to achieve in blockchain ecosystem. ZKSTARK, an interactive zero knowledge proof does not require this phase and also provides security against post quantum attacks. We propose a system that uses two indistinguishable hash functions along with ZKSTARK to improve the flexibility of blockchain platforms. The two indistinguishable hash functions are chosen from SHA3-finalists based on their security, performance and inner designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object Detection and Tracking Approaches for Video Surveillance Over Camera Network A Systematic Literature Review for Early Detection of Type II Diabetes Agricultural Field Monitoring using IoT A Methodical Overview on Phishing Detection along with an Organized Way to Construct an Anti-Phishing Framework Mobile Edge Communication An overview of MEC in 5G
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1