相应的力矩阵:桥梁连接基于壳的箱梁精细化分析与配筋设计

Yu Zhang, Haili Jiang, Dong Xu
{"title":"相应的力矩阵:桥梁连接基于壳的箱梁精细化分析与配筋设计","authors":"Yu Zhang, Haili Jiang, Dong Xu","doi":"10.2749/nanjing.2022.0483","DOIUrl":null,"url":null,"abstract":"Benefitting from the development of computing power, box girders can be analysed in a more refined way by discretizing cross-sections into shell elements. However, how to take full advantage of the analysis results in the reinforcement design process remains a problem. To solve this problem, the concept of “corresponding force matrix” is proposed in this paper. The matrix has 6 columns corresponding to the key unit force resultants of a specified location, and 12 rows corresponding to all the possible unfavourable cases. For each row, only one force resultant reaches its maximum (or minimum) under loads while the others take the corresponding values. Then the construction method of the proposed matrix under live loads and load combinations is described, respectively. After that, two reinforcement design methods with the use of the matrix were introduced and compared. Finally, discussions and preliminary conclusions are made.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corresponding Force Matrix: A Bridge Connecting Refined Analysis and Reinforcement Design of Box-section Girders Based on Shells\",\"authors\":\"Yu Zhang, Haili Jiang, Dong Xu\",\"doi\":\"10.2749/nanjing.2022.0483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benefitting from the development of computing power, box girders can be analysed in a more refined way by discretizing cross-sections into shell elements. However, how to take full advantage of the analysis results in the reinforcement design process remains a problem. To solve this problem, the concept of “corresponding force matrix” is proposed in this paper. The matrix has 6 columns corresponding to the key unit force resultants of a specified location, and 12 rows corresponding to all the possible unfavourable cases. For each row, only one force resultant reaches its maximum (or minimum) under loads while the others take the corresponding values. Then the construction method of the proposed matrix under live loads and load combinations is described, respectively. After that, two reinforcement design methods with the use of the matrix were introduced and compared. Finally, discussions and preliminary conclusions are made.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.0483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.0483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着计算能力的发展,箱梁可以通过将截面离散为壳单元来进行更精细的分析。然而,如何在加固设计过程中充分利用分析结果仍然是一个问题。为了解决这一问题,本文提出了“对应力矩阵”的概念。矩阵有6列对应指定位置的关键单元力结果,12行对应所有可能的不利情况。对于每一行,只有一个合力在荷载作用下达到最大值(或最小值),而其他合力取相应的值。然后分别描述了活载和荷载组合作用下所提出的矩阵的构造方法。在此基础上,介绍并比较了采用矩阵法的两种加固设计方法。最后,进行了讨论并得出了初步结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corresponding Force Matrix: A Bridge Connecting Refined Analysis and Reinforcement Design of Box-section Girders Based on Shells
Benefitting from the development of computing power, box girders can be analysed in a more refined way by discretizing cross-sections into shell elements. However, how to take full advantage of the analysis results in the reinforcement design process remains a problem. To solve this problem, the concept of “corresponding force matrix” is proposed in this paper. The matrix has 6 columns corresponding to the key unit force resultants of a specified location, and 12 rows corresponding to all the possible unfavourable cases. For each row, only one force resultant reaches its maximum (or minimum) under loads while the others take the corresponding values. Then the construction method of the proposed matrix under live loads and load combinations is described, respectively. After that, two reinforcement design methods with the use of the matrix were introduced and compared. Finally, discussions and preliminary conclusions are made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FE Modeling of the Interfacial Behaviour of Precast Multi-box Girder The Behavior of Long-span Suspended Footbridge Under Wind Load The Durability and SHM System of Hong Kong-Zhuhai-Macao Bridge Study on the Influence of Bridge Expansion Joints on Vehicle-Track- Bridge System Numerical Examination in Bridge Responses due to Fracture of Truss Member in a Steel Truss Bridge under Vehicle Loadings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1