基于ml的分块连续对消检测的mimo信道等块QRS分解

Dan Fang, Anzhong Wong, Jian-Kang Zhang, K. M. Wong
{"title":"基于ml的分块连续对消检测的mimo信道等块QRS分解","authors":"Dan Fang, Anzhong Wong, Jian-Kang Zhang, K. M. Wong","doi":"10.1109/SPAWC.2014.6941312","DOIUrl":null,"url":null,"abstract":"The multiple-input and multiple-output (MIMO) channel model is very useful for the presentation of a wide range of wireless communication systems. This paper addresses the joint design of a precoder and a receiver for a point-to-point MIMO channel model in a scenario in which perfect channel state information (CSI) is available at both ends. We develop a novel framework for the dual transmission-reception process. Under the proposed framework, the receiver decomposes the channel matrix by using a block QR decomposition, where Q is a unitary matrix and R is a block upper triangular matrix. The optimal maximum likelihood (ML) detec- tion process is employed within each diagonal block of R. Then, the detected block of symbols is substituted and subtracted sequentially according to the block QR decomposition based successive cancellation. On the transmitting end, the expression of probability of error based on ML detection is chosen as the design criterion to formulate the precoder design problem. This paper presents a design of MIMO transceivers in the particular case of having 4 transmitting and 4 receiving antennas with full CSI knowledge on both sides. In addition, a closed-form expression for the optimal precoder matrix is obtained for channels satisfying certain conditions.","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"161 30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Block-equal QRS decomposition of mimo channels with ML-based block successive cancellation detection\",\"authors\":\"Dan Fang, Anzhong Wong, Jian-Kang Zhang, K. M. Wong\",\"doi\":\"10.1109/SPAWC.2014.6941312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multiple-input and multiple-output (MIMO) channel model is very useful for the presentation of a wide range of wireless communication systems. This paper addresses the joint design of a precoder and a receiver for a point-to-point MIMO channel model in a scenario in which perfect channel state information (CSI) is available at both ends. We develop a novel framework for the dual transmission-reception process. Under the proposed framework, the receiver decomposes the channel matrix by using a block QR decomposition, where Q is a unitary matrix and R is a block upper triangular matrix. The optimal maximum likelihood (ML) detec- tion process is employed within each diagonal block of R. Then, the detected block of symbols is substituted and subtracted sequentially according to the block QR decomposition based successive cancellation. On the transmitting end, the expression of probability of error based on ML detection is chosen as the design criterion to formulate the precoder design problem. This paper presents a design of MIMO transceivers in the particular case of having 4 transmitting and 4 receiving antennas with full CSI knowledge on both sides. In addition, a closed-form expression for the optimal precoder matrix is obtained for channels satisfying certain conditions.\",\"PeriodicalId\":420837,\"journal\":{\"name\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"161 30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2014.6941312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多输入多输出(MIMO)信道模型对于各种无线通信系统的描述非常有用。针对点对点MIMO信道模型,在两端都能获得完美信道状态信息(CSI)的情况下,研究了预编码器和接收机的联合设计。我们开发了一种新的框架,用于双重传输-接收过程。在该框架下,接收机采用分块QR分解对信道矩阵进行分解,其中Q为酉矩阵,R为分块上三角矩阵。在r的每个对角线块内采用最优最大似然(ML)检测过程,然后根据基于块QR分解的逐次消去,对检测到的符号块依次进行替换和相减。在发送端,选择基于ML检测的错误概率表达式作为设计准则来制定预编码器设计问题。本文提出了一种MIMO收发器的设计,该收发器具有4个发射天线和4个接收天线,两侧具有完整的CSI知识。此外,对满足一定条件的信道,给出了最优预编码器矩阵的封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Block-equal QRS decomposition of mimo channels with ML-based block successive cancellation detection
The multiple-input and multiple-output (MIMO) channel model is very useful for the presentation of a wide range of wireless communication systems. This paper addresses the joint design of a precoder and a receiver for a point-to-point MIMO channel model in a scenario in which perfect channel state information (CSI) is available at both ends. We develop a novel framework for the dual transmission-reception process. Under the proposed framework, the receiver decomposes the channel matrix by using a block QR decomposition, where Q is a unitary matrix and R is a block upper triangular matrix. The optimal maximum likelihood (ML) detec- tion process is employed within each diagonal block of R. Then, the detected block of symbols is substituted and subtracted sequentially according to the block QR decomposition based successive cancellation. On the transmitting end, the expression of probability of error based on ML detection is chosen as the design criterion to formulate the precoder design problem. This paper presents a design of MIMO transceivers in the particular case of having 4 transmitting and 4 receiving antennas with full CSI knowledge on both sides. In addition, a closed-form expression for the optimal precoder matrix is obtained for channels satisfying certain conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unifying viewpoints on distributed asynchronous optimization for MISO interference channels Sparse channel estimation including the impact of the transceiver filters with application to OFDM Towards a principled approach to designing distributed MAC protocols Information rates employing 1-bit quantization and oversampling at the receiver Suppression of pilot-contamination in massive MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1