独立扬声器声-声反演的自回归发音波网流

Narjes Bozorg, Michael T. Johnson, M. Soleymanpour
{"title":"独立扬声器声-声反演的自回归发音波网流","authors":"Narjes Bozorg, Michael T. Johnson, M. Soleymanpour","doi":"10.1109/sped53181.2021.9587350","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new speaker independent method for Acoustic-to-Articulatory Inversion. The proposed architecture, Speaker Independent-Articulatory WaveNet (SI-AWN), models the relationship between acoustic and articulatory features by conditioning the articulatory trajectories on acoustic features and then utilizes the structure for unseen target speakers. We evaluate the proposed SI-AWN on the Electro Magnetic Articulography corpus of Mandarin Accented English (EMA-MAE), using the pool of acoustic-articulatory information from 35 reference speakers and testing on target speakers that include male, female, native and non-native speakers. The results suggest that SI-AWN improves the performance of the acoustic-to-articulatory inversion process compared to the baseline Maximum Likelihood Regression-Parallel Reference Speaker Weighting (MLLR-PRSW) method by 21 percent. To the best of our knowledge, this is the first application of a WaveNet-like synthesis approach to the problem of Speaker Independent Acoustic-to-Articulatory Inversion, and results are comparable to or better than the best currently published systems.","PeriodicalId":193702,"journal":{"name":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Autoregressive Articulatory WaveNet Flow for Speaker-Independent Acoustic-to-Articulatory Inversion\",\"authors\":\"Narjes Bozorg, Michael T. Johnson, M. Soleymanpour\",\"doi\":\"10.1109/sped53181.2021.9587350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new speaker independent method for Acoustic-to-Articulatory Inversion. The proposed architecture, Speaker Independent-Articulatory WaveNet (SI-AWN), models the relationship between acoustic and articulatory features by conditioning the articulatory trajectories on acoustic features and then utilizes the structure for unseen target speakers. We evaluate the proposed SI-AWN on the Electro Magnetic Articulography corpus of Mandarin Accented English (EMA-MAE), using the pool of acoustic-articulatory information from 35 reference speakers and testing on target speakers that include male, female, native and non-native speakers. The results suggest that SI-AWN improves the performance of the acoustic-to-articulatory inversion process compared to the baseline Maximum Likelihood Regression-Parallel Reference Speaker Weighting (MLLR-PRSW) method by 21 percent. To the best of our knowledge, this is the first application of a WaveNet-like synthesis approach to the problem of Speaker Independent Acoustic-to-Articulatory Inversion, and results are comparable to or better than the best currently published systems.\",\"PeriodicalId\":193702,\"journal\":{\"name\":\"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sped53181.2021.9587350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sped53181.2021.9587350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的独立于说话人的声-发音反演方法。提出的“说话人独立-发音波网”(Speaker independent - articulation WaveNet, SI-AWN)结构通过将发音轨迹调节到声学特征上,对声学和发音特征之间的关系进行建模,然后将该结构用于看不见的目标说话人。我们使用来自35个参考说话者的声学-发音信息池,并对包括男性、女性、母语和非母语说话者在内的目标说话者进行测试,在普通话重音英语电磁发音语料库(EMA-MAE)上评估了所提出的SI-AWN。结果表明,与基线最大似然回归-平行参考说话人加权(MLLR-PRSW)方法相比,SI-AWN将声学-发音反演过程的性能提高了21%。据我们所知,这是第一次将类似wavenet的合成方法应用于扬声器独立声学-发音反转问题,其结果与目前发表的最好的系统相当或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autoregressive Articulatory WaveNet Flow for Speaker-Independent Acoustic-to-Articulatory Inversion
In this paper we introduce a new speaker independent method for Acoustic-to-Articulatory Inversion. The proposed architecture, Speaker Independent-Articulatory WaveNet (SI-AWN), models the relationship between acoustic and articulatory features by conditioning the articulatory trajectories on acoustic features and then utilizes the structure for unseen target speakers. We evaluate the proposed SI-AWN on the Electro Magnetic Articulography corpus of Mandarin Accented English (EMA-MAE), using the pool of acoustic-articulatory information from 35 reference speakers and testing on target speakers that include male, female, native and non-native speakers. The results suggest that SI-AWN improves the performance of the acoustic-to-articulatory inversion process compared to the baseline Maximum Likelihood Regression-Parallel Reference Speaker Weighting (MLLR-PRSW) method by 21 percent. To the best of our knowledge, this is the first application of a WaveNet-like synthesis approach to the problem of Speaker Independent Acoustic-to-Articulatory Inversion, and results are comparable to or better than the best currently published systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Segmentation of Texts based on Stylistic Features Romanian printed language, statistical independence and the type II statistical error Comparison in Suprasegmental Characteristics between Typical and Dysarthric Talkers at Varying Severity Levels Neural Networks for Automatic Environmental Sound Recognition Speaker Verification Experiments using Identity Vectors, on a Romanian Speakers Corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1