{"title":"基于模糊的设定点调制模型参考自适应控制器增益自适应方案","authors":"A. K. Pal, I. Naskar, Sampa Paul","doi":"10.4018/IJNCR.2018100101","DOIUrl":null,"url":null,"abstract":"In model reference adaptive controller (MRACs), the adaptive gain of the controller is varied according to the process dynamic variation as it is directly related with the system stability. In MRAC, there is no provision of an automatic selection of adaptive gain and adaptation rate. To get rid of this problem and for the automatic selection of adaptive gain, a fuzzy-based scheme is presented in this article. In the proposed fuzzy-based technique, the controller output gain is illustrated as the function of input process parameters, which is continuously amended for any process parameter variations. A set-point modulation scheme is also incorporated to tackle the undesired process parameter variations and to improve performance indices of the process under control. The performance of the proposed set-point modulated fuzzy-based model reference adaptive controller (SFMRAC) is demonstrated on different second order linear, marginally stable and nonlinear models. The scheme is also explored on a real-time twin arm overhead crane for transport of material without pendulation.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy-based Gain Adaptive Scheme for Set-Point Modulated Model Reference Adaptive Controller\",\"authors\":\"A. K. Pal, I. Naskar, Sampa Paul\",\"doi\":\"10.4018/IJNCR.2018100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In model reference adaptive controller (MRACs), the adaptive gain of the controller is varied according to the process dynamic variation as it is directly related with the system stability. In MRAC, there is no provision of an automatic selection of adaptive gain and adaptation rate. To get rid of this problem and for the automatic selection of adaptive gain, a fuzzy-based scheme is presented in this article. In the proposed fuzzy-based technique, the controller output gain is illustrated as the function of input process parameters, which is continuously amended for any process parameter variations. A set-point modulation scheme is also incorporated to tackle the undesired process parameter variations and to improve performance indices of the process under control. The performance of the proposed set-point modulated fuzzy-based model reference adaptive controller (SFMRAC) is demonstrated on different second order linear, marginally stable and nonlinear models. The scheme is also explored on a real-time twin arm overhead crane for transport of material without pendulation.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJNCR.2018100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJNCR.2018100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy-based Gain Adaptive Scheme for Set-Point Modulated Model Reference Adaptive Controller
In model reference adaptive controller (MRACs), the adaptive gain of the controller is varied according to the process dynamic variation as it is directly related with the system stability. In MRAC, there is no provision of an automatic selection of adaptive gain and adaptation rate. To get rid of this problem and for the automatic selection of adaptive gain, a fuzzy-based scheme is presented in this article. In the proposed fuzzy-based technique, the controller output gain is illustrated as the function of input process parameters, which is continuously amended for any process parameter variations. A set-point modulation scheme is also incorporated to tackle the undesired process parameter variations and to improve performance indices of the process under control. The performance of the proposed set-point modulated fuzzy-based model reference adaptive controller (SFMRAC) is demonstrated on different second order linear, marginally stable and nonlinear models. The scheme is also explored on a real-time twin arm overhead crane for transport of material without pendulation.