基于特征提取的音频和图像数据压缩算法

Mohammad Sheraj, Ashish Chopra
{"title":"基于特征提取的音频和图像数据压缩算法","authors":"Mohammad Sheraj, Ashish Chopra","doi":"10.1109/ICCCSP49186.2020.9315248","DOIUrl":null,"url":null,"abstract":"We aim to achieve the highest data compression ratio in a lossy scenario while still maintaining the original image or audio files characteristics and resolution/bitrate. For this we would run feature extraction on chunks of the data and store them in a database with a specific hash as a key. This hash will be stored in the file and the full data later reconstructed from the database. The database will be created by training on a vast range of data and storing only the most common chunks encountered by hash. The compression ratio achieved for image it is 0.01 over standard raw input data.","PeriodicalId":310458,"journal":{"name":"2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Compression Algorithm for Audio and Image using Feature Extraction\",\"authors\":\"Mohammad Sheraj, Ashish Chopra\",\"doi\":\"10.1109/ICCCSP49186.2020.9315248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to achieve the highest data compression ratio in a lossy scenario while still maintaining the original image or audio files characteristics and resolution/bitrate. For this we would run feature extraction on chunks of the data and store them in a database with a specific hash as a key. This hash will be stored in the file and the full data later reconstructed from the database. The database will be created by training on a vast range of data and storing only the most common chunks encountered by hash. The compression ratio achieved for image it is 0.01 over standard raw input data.\",\"PeriodicalId\":310458,\"journal\":{\"name\":\"2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCSP49186.2020.9315248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCSP49186.2020.9315248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们的目标是在有损的情况下实现最高的数据压缩比,同时仍然保持原始图像或音频文件的特征和分辨率/比特率。为此,我们将对数据块进行特征提取,并将它们存储在数据库中,并使用特定的哈希作为键。该散列将存储在文件中,然后从数据库中重建完整的数据。数据库将通过对大量数据进行训练并仅存储哈希遇到的最常见块来创建。与标准原始输入数据相比,图像的压缩比为0.01。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Compression Algorithm for Audio and Image using Feature Extraction
We aim to achieve the highest data compression ratio in a lossy scenario while still maintaining the original image or audio files characteristics and resolution/bitrate. For this we would run feature extraction on chunks of the data and store them in a database with a specific hash as a key. This hash will be stored in the file and the full data later reconstructed from the database. The database will be created by training on a vast range of data and storing only the most common chunks encountered by hash. The compression ratio achieved for image it is 0.01 over standard raw input data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Agritech Farming Using Staging Level Blockchaining and Transaction Access Control Using Micro QR Code Improving Facial Recognition of FaceNet in a small dataset using DeepFakes Wireless Sensor Network Based Structural Health Monitoring for Multistory Building Third Vision For Women Using Deep Learning Techniques Dynamic Facility Layout Problem Using Chemical Reaction Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1