基于深度学习的糖尿病视网膜病变计算机辅助诊断方法

Omar Dekhil, A. Naglah, M. Shaban, M. Ghazal, F. Taher, A. Elbaz
{"title":"基于深度学习的糖尿病视网膜病变计算机辅助诊断方法","authors":"Omar Dekhil, A. Naglah, M. Shaban, M. Ghazal, F. Taher, A. Elbaz","doi":"10.1109/IST48021.2019.9010333","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is a retinal disease caused by the high blood sugar levels that may damage and block the blood vessels feeding the retina. In the early stages of DR, the disease is asymptomatic; however, as the disease advances, a possible sudden loss of vision and blindness may occur. Therefore, an early diagnosis and staging of the disease is required to possibly slow down the progression of the disease and improve control of the symptoms. In response to the previous challenge, we introduce a computer aided diagnosis tool based on convolutional neural networks (CNN) to classify fundus images into one of the five stages of DR. The proposed CNN consists of a preprocessing stage, five stage convolutional, rectified linear and pooling layers followed by three fully connected layers. Transfer learning was adopted to minimize overfitting by training the model on a larger dataset of 3.2 million images (i.e. ImageNet) prior to the use of the model on the APTOS 2019 Kaggle DR dataset. The proposed approach has achieved a testing accuracy of 77% and a quadratic weighted kappa score of 78%, offering a promising solution for a successful early diagnose and staging of DR in an automated fashion.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Deep Learning Based Method for Computer Aided Diagnosis of Diabetic Retinopathy\",\"authors\":\"Omar Dekhil, A. Naglah, M. Shaban, M. Ghazal, F. Taher, A. Elbaz\",\"doi\":\"10.1109/IST48021.2019.9010333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) is a retinal disease caused by the high blood sugar levels that may damage and block the blood vessels feeding the retina. In the early stages of DR, the disease is asymptomatic; however, as the disease advances, a possible sudden loss of vision and blindness may occur. Therefore, an early diagnosis and staging of the disease is required to possibly slow down the progression of the disease and improve control of the symptoms. In response to the previous challenge, we introduce a computer aided diagnosis tool based on convolutional neural networks (CNN) to classify fundus images into one of the five stages of DR. The proposed CNN consists of a preprocessing stage, five stage convolutional, rectified linear and pooling layers followed by three fully connected layers. Transfer learning was adopted to minimize overfitting by training the model on a larger dataset of 3.2 million images (i.e. ImageNet) prior to the use of the model on the APTOS 2019 Kaggle DR dataset. The proposed approach has achieved a testing accuracy of 77% and a quadratic weighted kappa score of 78%, offering a promising solution for a successful early diagnose and staging of DR in an automated fashion.\",\"PeriodicalId\":117219,\"journal\":{\"name\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST48021.2019.9010333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

糖尿病视网膜病变(DR)是一种由高血糖引起的视网膜疾病,可能会损害和阻塞为视网膜供血的血管。在DR的早期阶段,疾病是无症状的;然而,随着病情的发展,可能会突然丧失视力和失明。因此,需要对疾病进行早期诊断和分期,以可能减缓疾病的进展并改善对症状的控制。为了应对之前的挑战,我们引入了一种基于卷积神经网络(CNN)的计算机辅助诊断工具,将眼底图像分类到dr的五个阶段之一,提出的CNN包括预处理阶段,五个阶段卷积层,校正线性层和池化层,然后是三个完全连接层。在APTOS 2019 Kaggle DR数据集上使用模型之前,通过在320万张图像(即ImageNet)的更大数据集上训练模型,采用迁移学习来最小化过拟合。该方法实现了77%的测试精度和78%的二次加权kappa评分,为成功的早期诊断和DR的自动化分期提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Based Method for Computer Aided Diagnosis of Diabetic Retinopathy
Diabetic retinopathy (DR) is a retinal disease caused by the high blood sugar levels that may damage and block the blood vessels feeding the retina. In the early stages of DR, the disease is asymptomatic; however, as the disease advances, a possible sudden loss of vision and blindness may occur. Therefore, an early diagnosis and staging of the disease is required to possibly slow down the progression of the disease and improve control of the symptoms. In response to the previous challenge, we introduce a computer aided diagnosis tool based on convolutional neural networks (CNN) to classify fundus images into one of the five stages of DR. The proposed CNN consists of a preprocessing stage, five stage convolutional, rectified linear and pooling layers followed by three fully connected layers. Transfer learning was adopted to minimize overfitting by training the model on a larger dataset of 3.2 million images (i.e. ImageNet) prior to the use of the model on the APTOS 2019 Kaggle DR dataset. The proposed approach has achieved a testing accuracy of 77% and a quadratic weighted kappa score of 78%, offering a promising solution for a successful early diagnose and staging of DR in an automated fashion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Adversarially Enhanced Heatmaps for Aorta Segmentation in CTA Millimeter Wave Imaging of Surface Defects and Corrosion under Paint using V-band Reflectometer An Efficient Human Activity Recognition Framework Based on Wearable IMU Wrist Sensors Retinal Layers OCT Scans 3-D Segmentation Identifying Asthma genetic signature patterns by mining Gene Expression BIG Datasets using Image Filtering Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1