大数据分析和查询优化提高了hadoop数据库的性能

Cherif A. A. Bissiriou, H. Chaoui
{"title":"大数据分析和查询优化提高了hadoop数据库的性能","authors":"Cherif A. A. Bissiriou, H. Chaoui","doi":"10.1145/2660517.2660529","DOIUrl":null,"url":null,"abstract":"High performance and scalability are two essentials requirements for data analytics systems as the amount of data being collected, stored and processed continue to grow rapidly. In this paper, we propose a new approach based on HadoopDB. Our main goal is to improve HadoopDB performance by adding some components. To achieve this, we incorporate a fast and space-efficient data placement structure in MapReduce-based Warehouse systems and another SQL-to-MapReduce translator. We also replace the initial Database implemented in HadoopDB with other column oriented Database. In addition we add security mechanism to protect MapReduce processing integrity.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Big data analysis and query optimization improve HadoopDB performance\",\"authors\":\"Cherif A. A. Bissiriou, H. Chaoui\",\"doi\":\"10.1145/2660517.2660529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High performance and scalability are two essentials requirements for data analytics systems as the amount of data being collected, stored and processed continue to grow rapidly. In this paper, we propose a new approach based on HadoopDB. Our main goal is to improve HadoopDB performance by adding some components. To achieve this, we incorporate a fast and space-efficient data placement structure in MapReduce-based Warehouse systems and another SQL-to-MapReduce translator. We also replace the initial Database implemented in HadoopDB with other column oriented Database. In addition we add security mechanism to protect MapReduce processing integrity.\",\"PeriodicalId\":344435,\"journal\":{\"name\":\"Joint Conference on Lexical and Computational Semantics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint Conference on Lexical and Computational Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2660517.2660529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2660517.2660529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着收集、存储和处理的数据量持续快速增长,高性能和可扩展性是数据分析系统的两个基本要求。在本文中,我们提出了一种基于hadoop数据库的新方法。我们的主要目标是通过添加一些组件来提高HadoopDB的性能。为了实现这一点,我们在基于mapreduce的仓库系统和另一个SQL-to-MapReduce转换器中合并了一个快速且节省空间的数据放置结构。我们还将在HadoopDB中实现的初始数据库替换为其他面向列的数据库。此外,我们还增加了安全机制来保护MapReduce处理的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big data analysis and query optimization improve HadoopDB performance
High performance and scalability are two essentials requirements for data analytics systems as the amount of data being collected, stored and processed continue to grow rapidly. In this paper, we propose a new approach based on HadoopDB. Our main goal is to improve HadoopDB performance by adding some components. To achieve this, we incorporate a fast and space-efficient data placement structure in MapReduce-based Warehouse systems and another SQL-to-MapReduce translator. We also replace the initial Database implemented in HadoopDB with other column oriented Database. In addition we add security mechanism to protect MapReduce processing integrity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embedded Semantic Lexicon Induction with Joint Global and Local Optimization Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions Comparing Approaches for Automatic Question Identification Detecting Asymmetric Semantic Relations in Context: A Case-Study on Hypernymy Detection Deep Learning Models For Multiword Expression Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1