在线文本的作者身份识别

Richmond Hong Rui Tan, F. S. Tsai
{"title":"在线文本的作者身份识别","authors":"Richmond Hong Rui Tan, F. S. Tsai","doi":"10.1109/CW.2010.50","DOIUrl":null,"url":null,"abstract":"Authorship identification for online text such as blogs and e-books is a challenging problem as these documents do not have a considerable amount of content. Therefore, identification is much harder than other documents such as books and reports. The paper investigates the choice of features and classifier accuracy which are suitable for such texts. Syntactic features are found to be good for large data sets, whereas lexical features are good for small data sets. The results can be used to customize and further improve authorship detection techniques according to the characteristics of the writing samples.","PeriodicalId":410870,"journal":{"name":"2010 International Conference on Cyberworlds","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Authorship Identification for Online Text\",\"authors\":\"Richmond Hong Rui Tan, F. S. Tsai\",\"doi\":\"10.1109/CW.2010.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Authorship identification for online text such as blogs and e-books is a challenging problem as these documents do not have a considerable amount of content. Therefore, identification is much harder than other documents such as books and reports. The paper investigates the choice of features and classifier accuracy which are suitable for such texts. Syntactic features are found to be good for large data sets, whereas lexical features are good for small data sets. The results can be used to customize and further improve authorship detection techniques according to the characteristics of the writing samples.\",\"PeriodicalId\":410870,\"journal\":{\"name\":\"2010 International Conference on Cyberworlds\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Cyberworlds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2010.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyberworlds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2010.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在线文本(如博客和电子书)的作者身份识别是一个具有挑战性的问题,因为这些文档没有相当多的内容。因此,与书籍和报告等其他文件相比,识别要困难得多。本文研究了适合这类文本的特征选择和分类器精度。我们发现语法特征对大数据集很好,而词汇特征对小数据集很好。研究结果可用于根据写作样本的特点定制和进一步改进作者身份检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Authorship Identification for Online Text
Authorship identification for online text such as blogs and e-books is a challenging problem as these documents do not have a considerable amount of content. Therefore, identification is much harder than other documents such as books and reports. The paper investigates the choice of features and classifier accuracy which are suitable for such texts. Syntactic features are found to be good for large data sets, whereas lexical features are good for small data sets. The results can be used to customize and further improve authorship detection techniques according to the characteristics of the writing samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Affordable Augmented Reality Based Rehabilitation System for Hand Motions Geodesic Model of Human Body Cinematics and Narratives: An Exploitation of Real-Time Animation User Model for Predictive Calibration Control on Interactive Screens Computer Generated Caricature: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1