{"title":"机械臂动力学方程的书写形式","authors":"A. I. Telegin","doi":"10.14529/ctcr210405","DOIUrl":null,"url":null,"abstract":"The problem of cumbersome equations of dynamics for manipulation systems of industrial robots (manipulators) with translational and rotational joints is solved. A new formalism for writing out the equations of dynamics of manipulators by using of guide cosines is proposed. Examples of writing out equations of dynamics of manipulators with guid cosines are given. The equations of dynamics in relative angles of rotation of bodies are obtained with the help of these guide cosines by applying their properties. These manipulators have from three to six degrees of freedom. In their equations of dynamics the geometric, kinematic, static and inertial parameters are explicit. The multipliers for accelerations and products of velocities are optimal in the sense of the minimum of arithmetic operations (additions and multiplications) that are needed for their calculations in the written out equations of dynamics. JS-code and method for verification of the equations of dynamics of manipulators written in analytical form are proposed. The problem is that when the equations are written out manually, errors and oversights in the intermediate entries and the final result are possible. Therefore it is necessary to check the results of writing out for absence of errors, i.e. to perform verification of formulas for calculation of constitutive equations of dynamics. To do this, we can use software designed to calculate the generalized driving forces of manipulators, i.e. to solve the first problem of dynamics. Such software is offered as a web-application, in which JS-function is used for verification of the equations of dynamics of manipulators. The method of verification of formulas to calculate the generalized forces of gravity and multipliers (coefficients) for generalized accelerations and products of generalized velocities in the equations of dynamics is developed. An example of verification of the equations of dynamics of the universal manipulator with six degrees of freedom in space is given. Aim. The aim of research is to develop a formalism for writing out the analytical form of the equations of the manipulators’ dynamics in the guide cosines of the principal axes of the coupled body coordinate systems, whose coefficients contain the minimum number of arithmetic operations. Research methods. The methods of research refer to vector and analytic mechanics of absolutely solid systems, to vector algebra, and to systems analysis and programming in scripting languages. Results. The results contain two proved statements, in which there are the formulas and the methodology that allow us to write manually the equations of dynamics of manipulators with three and six degrees of mobility both in guiding cosines and in generalized coordinates. In both cases it is impossible to simplify the obtained equations. Conclusion. The offered analytical types of the equations of dynamics occupy several lines. By the known classical formalisms (Lagrange, Appel, Nielsen, Newton-Euler, etc.) it is practically impossible to obtain similar results because of the large number of complex mathematical operations in their implementation and the cumbersomeness of the resulting formulas.","PeriodicalId":338904,"journal":{"name":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formalism of Writing Out of Manipulators Dynamic Equation\",\"authors\":\"A. I. Telegin\",\"doi\":\"10.14529/ctcr210405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of cumbersome equations of dynamics for manipulation systems of industrial robots (manipulators) with translational and rotational joints is solved. A new formalism for writing out the equations of dynamics of manipulators by using of guide cosines is proposed. Examples of writing out equations of dynamics of manipulators with guid cosines are given. The equations of dynamics in relative angles of rotation of bodies are obtained with the help of these guide cosines by applying their properties. These manipulators have from three to six degrees of freedom. In their equations of dynamics the geometric, kinematic, static and inertial parameters are explicit. The multipliers for accelerations and products of velocities are optimal in the sense of the minimum of arithmetic operations (additions and multiplications) that are needed for their calculations in the written out equations of dynamics. JS-code and method for verification of the equations of dynamics of manipulators written in analytical form are proposed. The problem is that when the equations are written out manually, errors and oversights in the intermediate entries and the final result are possible. Therefore it is necessary to check the results of writing out for absence of errors, i.e. to perform verification of formulas for calculation of constitutive equations of dynamics. To do this, we can use software designed to calculate the generalized driving forces of manipulators, i.e. to solve the first problem of dynamics. Such software is offered as a web-application, in which JS-function is used for verification of the equations of dynamics of manipulators. The method of verification of formulas to calculate the generalized forces of gravity and multipliers (coefficients) for generalized accelerations and products of generalized velocities in the equations of dynamics is developed. An example of verification of the equations of dynamics of the universal manipulator with six degrees of freedom in space is given. Aim. The aim of research is to develop a formalism for writing out the analytical form of the equations of the manipulators’ dynamics in the guide cosines of the principal axes of the coupled body coordinate systems, whose coefficients contain the minimum number of arithmetic operations. Research methods. The methods of research refer to vector and analytic mechanics of absolutely solid systems, to vector algebra, and to systems analysis and programming in scripting languages. Results. The results contain two proved statements, in which there are the formulas and the methodology that allow us to write manually the equations of dynamics of manipulators with three and six degrees of mobility both in guiding cosines and in generalized coordinates. In both cases it is impossible to simplify the obtained equations. Conclusion. The offered analytical types of the equations of dynamics occupy several lines. By the known classical formalisms (Lagrange, Appel, Nielsen, Newton-Euler, etc.) it is practically impossible to obtain similar results because of the large number of complex mathematical operations in their implementation and the cumbersomeness of the resulting formulas.\",\"PeriodicalId\":338904,\"journal\":{\"name\":\"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/ctcr210405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/ctcr210405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

解决了具有平移关节和旋转关节的工业机器人操纵系统动力学方程繁琐的问题。提出了一种利用引导余弦来表示机械臂动力学方程的新形式。给出了带引导余弦的机械臂动力学方程的解法。利用这些导余弦的性质,得到了物体相对旋转角的动力学方程。这些机械手有三到六个自由度。在它们的动力学方程中,几何、运动学、静力和惯性参数是明确的。加速度和速度乘积的乘数是最优的,因为在写出的动力学方程中,计算所需的算术运算(加法和乘法)最少。提出了以解析形式书写的机械臂动力学方程的js代码和验证方法。问题是,当手工写出方程式时,中间条目和最终结果中的错误和疏忽是可能的。因此,有必要对写出的结果进行检查,以确保没有错误,即对动力学本构方程的计算公式进行验证。为此,我们可以使用设计用于计算机械手广义驱动力的软件,即解决动力学的第一个问题。该软件以web应用程序的形式提供,其中使用js函数对机械手的动力学方程进行验证。给出了动力学方程中广义重力、广义加速度和广义速度积的乘数(系数)计算公式的验证方法。给出了空间六自由度万能机械臂动力学方程的验证实例。的目标。研究的目的是建立一种在耦合体坐标系的主轴导余弦下的机械臂动力学方程的解析形式,其系数包含最小的算术运算次数。研究方法。研究方法涉及绝对固体系统的矢量和分析力学,矢量代数,系统分析和脚本语言编程。结果。结果包含两个证明陈述,其中包含公式和方法,使我们能够在引导余弦和广义坐标下手动编写具有三自由度和六自由度机械手的动力学方程。在这两种情况下,都不可能化简得到的方程。结论。所提供的动力学方程的解析类型占用了好几行。通过已知的经典形式(拉格朗日、阿佩尔、尼尔森、牛顿-欧拉等),由于在它们的实现中大量复杂的数学运算和所得公式的繁琐,实际上是不可能得到类似的结果的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formalism of Writing Out of Manipulators Dynamic Equation
The problem of cumbersome equations of dynamics for manipulation systems of industrial robots (manipulators) with translational and rotational joints is solved. A new formalism for writing out the equations of dynamics of manipulators by using of guide cosines is proposed. Examples of writing out equations of dynamics of manipulators with guid cosines are given. The equations of dynamics in relative angles of rotation of bodies are obtained with the help of these guide cosines by applying their properties. These manipulators have from three to six degrees of freedom. In their equations of dynamics the geometric, kinematic, static and inertial parameters are explicit. The multipliers for accelerations and products of velocities are optimal in the sense of the minimum of arithmetic operations (additions and multiplications) that are needed for their calculations in the written out equations of dynamics. JS-code and method for verification of the equations of dynamics of manipulators written in analytical form are proposed. The problem is that when the equations are written out manually, errors and oversights in the intermediate entries and the final result are possible. Therefore it is necessary to check the results of writing out for absence of errors, i.e. to perform verification of formulas for calculation of constitutive equations of dynamics. To do this, we can use software designed to calculate the generalized driving forces of manipulators, i.e. to solve the first problem of dynamics. Such software is offered as a web-application, in which JS-function is used for verification of the equations of dynamics of manipulators. The method of verification of formulas to calculate the generalized forces of gravity and multipliers (coefficients) for generalized accelerations and products of generalized velocities in the equations of dynamics is developed. An example of verification of the equations of dynamics of the universal manipulator with six degrees of freedom in space is given. Aim. The aim of research is to develop a formalism for writing out the analytical form of the equations of the manipulators’ dynamics in the guide cosines of the principal axes of the coupled body coordinate systems, whose coefficients contain the minimum number of arithmetic operations. Research methods. The methods of research refer to vector and analytic mechanics of absolutely solid systems, to vector algebra, and to systems analysis and programming in scripting languages. Results. The results contain two proved statements, in which there are the formulas and the methodology that allow us to write manually the equations of dynamics of manipulators with three and six degrees of mobility both in guiding cosines and in generalized coordinates. In both cases it is impossible to simplify the obtained equations. Conclusion. The offered analytical types of the equations of dynamics occupy several lines. By the known classical formalisms (Lagrange, Appel, Nielsen, Newton-Euler, etc.) it is practically impossible to obtain similar results because of the large number of complex mathematical operations in their implementation and the cumbersomeness of the resulting formulas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formalization of Basic Processes and Mathematical Model of the System for Monitoring and Analysis of Publications of Electronic Media Determination of the Parameters of the La¬mination of a Bimetallic Plate by Means of Active Thermal Non-Destructive Control Perm Region Natural Resource Potential Forecasting Using Machine Learning Models To the Question of Determining the Barometric Height by a Mechanical Altimeter and Air Signal System Formalism of Writing Out of Manipulators Dynamic Equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1