基于模型的直流电机调速组合控制方案

I. Okoro, Clinton Enwerem
{"title":"基于模型的直流电机调速组合控制方案","authors":"I. Okoro, Clinton Enwerem","doi":"10.1109/PowerAfrica.2019.8928856","DOIUrl":null,"url":null,"abstract":"The separately-excited DC motor is a high-performance variable speed drive vital for industrial applications such as robotics, actuation, control and guided manipulation because of its precision, simplicity, continuous control feature and wide speed range. Hence there is need to accurately regulate and drive the motor at desired speed. The individual armature voltage and field current methods are flawed in their inability to control the motor speed over a wider range. Hence this paper is proposing a combined armature voltage and field current control method using Internal Model Control (IMC) feedback control scheme that will ensure reference speed tracking, a fast and non-oscillatory response for the DC motor speed. The armature voltage and field current control techniques are both modelled, fully capturing the dynamic effects of the armature and field excitation of the DC motor. The derived model is then used to obtain optimal settings for a PID controller that will control the motor speed. This model-based controller enhances the performance of the motor. Computer simulations are presented to show the effectiveness of the proposed control scheme.","PeriodicalId":308661,"journal":{"name":"2019 IEEE PES/IAS PowerAfrica","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Model-based Speed Control of a DC Motor Using a Combined Control Scheme\",\"authors\":\"I. Okoro, Clinton Enwerem\",\"doi\":\"10.1109/PowerAfrica.2019.8928856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The separately-excited DC motor is a high-performance variable speed drive vital for industrial applications such as robotics, actuation, control and guided manipulation because of its precision, simplicity, continuous control feature and wide speed range. Hence there is need to accurately regulate and drive the motor at desired speed. The individual armature voltage and field current methods are flawed in their inability to control the motor speed over a wider range. Hence this paper is proposing a combined armature voltage and field current control method using Internal Model Control (IMC) feedback control scheme that will ensure reference speed tracking, a fast and non-oscillatory response for the DC motor speed. The armature voltage and field current control techniques are both modelled, fully capturing the dynamic effects of the armature and field excitation of the DC motor. The derived model is then used to obtain optimal settings for a PID controller that will control the motor speed. This model-based controller enhances the performance of the motor. Computer simulations are presented to show the effectiveness of the proposed control scheme.\",\"PeriodicalId\":308661,\"journal\":{\"name\":\"2019 IEEE PES/IAS PowerAfrica\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES/IAS PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerAfrica.2019.8928856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica.2019.8928856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

分励直流电动机是一种高性能的变速驱动器,对于机器人,驱动,控制和引导操作等工业应用至关重要,因为它具有精度,简单性,连续控制特性和宽速度范围。因此,需要准确地调节和驱动电机在所需的速度。单独的电枢电压和磁场电流方法存在缺陷,因为它们无法在更大的范围内控制电机速度。因此,本文提出了一种结合电枢电压和磁场电流的控制方法,采用内模控制(IMC)反馈控制方案,以确保参考速度跟踪,直流电机速度的快速和无振荡响应。对电枢电压和磁场电流控制技术进行了建模,充分捕捉了直流电机电枢和励磁的动态影响。然后使用导出的模型来获得PID控制器的最佳设置,该控制器将控制电机速度。这种基于模型的控制器提高了电机的性能。计算机仿真表明了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-based Speed Control of a DC Motor Using a Combined Control Scheme
The separately-excited DC motor is a high-performance variable speed drive vital for industrial applications such as robotics, actuation, control and guided manipulation because of its precision, simplicity, continuous control feature and wide speed range. Hence there is need to accurately regulate and drive the motor at desired speed. The individual armature voltage and field current methods are flawed in their inability to control the motor speed over a wider range. Hence this paper is proposing a combined armature voltage and field current control method using Internal Model Control (IMC) feedback control scheme that will ensure reference speed tracking, a fast and non-oscillatory response for the DC motor speed. The armature voltage and field current control techniques are both modelled, fully capturing the dynamic effects of the armature and field excitation of the DC motor. The derived model is then used to obtain optimal settings for a PID controller that will control the motor speed. This model-based controller enhances the performance of the motor. Computer simulations are presented to show the effectiveness of the proposed control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling, Analysis of Current Trajectories of a Nine Phase Induction Machine for Regenerative Capabilities A Model Algorithm for Smart Power Supply and Distribution in Residential Building REPLAN: Multi-Region Power System Planning Approach for Nigeria Eddy current losses computation in conductives materials: case of Aluminum and Permanent Magnet-Part I: Frequency and current effects Performance Analysis of Fuzzy Logic Maximum Power Point Tracking Scheme for Solar PV System Under Varying Load and Atmospheric Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1