PSRPS:云系统的工作负载模式敏感资源分配方案

Feifei Zhang, Jie Wu, Zhihui Lu
{"title":"PSRPS:云系统的工作负载模式敏感资源分配方案","authors":"Feifei Zhang, Jie Wu, Zhihui Lu","doi":"10.1109/SCC.2013.49","DOIUrl":null,"url":null,"abstract":"On-demand resource provisioning is with great challenge in cloud systems. The key problem is how to learn about the future workload in advance to help determine resource allocation. There are various prediction models developed to predict the future workload. The major problem of previous researches is that they assume that application workload has static pattern. In practice, so many application workloads have hybrid dynamic pattern overtime. To achieve high prediction accuracy, we find that it's essential to detect both workload pattern stage and the changes in the model parameters. In this paper, we present a Pattern Sensitive Resource Provisioning Scheme, named PSRPS. It can recognize application workload patterns and choose suitable prediction models for prediction online. Besides, when there is maladjustment in prediction models, PSRPS can switch prediction models or adjust the parameters of the model by itself to adaptively to guarantee prediction accuracy.","PeriodicalId":370898,"journal":{"name":"2013 IEEE International Conference on Services Computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"PSRPS: A Workload Pattern Sensitive Resource Provisioning Scheme for Cloud Systems\",\"authors\":\"Feifei Zhang, Jie Wu, Zhihui Lu\",\"doi\":\"10.1109/SCC.2013.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-demand resource provisioning is with great challenge in cloud systems. The key problem is how to learn about the future workload in advance to help determine resource allocation. There are various prediction models developed to predict the future workload. The major problem of previous researches is that they assume that application workload has static pattern. In practice, so many application workloads have hybrid dynamic pattern overtime. To achieve high prediction accuracy, we find that it's essential to detect both workload pattern stage and the changes in the model parameters. In this paper, we present a Pattern Sensitive Resource Provisioning Scheme, named PSRPS. It can recognize application workload patterns and choose suitable prediction models for prediction online. Besides, when there is maladjustment in prediction models, PSRPS can switch prediction models or adjust the parameters of the model by itself to adaptively to guarantee prediction accuracy.\",\"PeriodicalId\":370898,\"journal\":{\"name\":\"2013 IEEE International Conference on Services Computing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Services Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC.2013.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Services Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2013.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在云系统中,按需资源供应是一个巨大的挑战。关键问题是如何提前了解未来的工作负载,以帮助确定资源分配。开发了各种预测模型来预测未来的工作负载。以往研究的主要问题是假定应用程序工作负载具有静态模式。在实践中,许多应用程序工作负载都具有混合动态模式超时。为了达到较高的预测精度,我们发现必须同时检测工作负载模式阶段和模型参数的变化。本文提出了一种模式敏感的资源分配方案PSRPS。它可以识别应用程序的工作负载模式,并选择合适的预测模型进行在线预测。此外,当预测模型存在失调时,PSRPS可以切换预测模型或自适应调整模型参数,以保证预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSRPS: A Workload Pattern Sensitive Resource Provisioning Scheme for Cloud Systems
On-demand resource provisioning is with great challenge in cloud systems. The key problem is how to learn about the future workload in advance to help determine resource allocation. There are various prediction models developed to predict the future workload. The major problem of previous researches is that they assume that application workload has static pattern. In practice, so many application workloads have hybrid dynamic pattern overtime. To achieve high prediction accuracy, we find that it's essential to detect both workload pattern stage and the changes in the model parameters. In this paper, we present a Pattern Sensitive Resource Provisioning Scheme, named PSRPS. It can recognize application workload patterns and choose suitable prediction models for prediction online. Besides, when there is maladjustment in prediction models, PSRPS can switch prediction models or adjust the parameters of the model by itself to adaptively to guarantee prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT Mashup as a Service: Cloud-Based Mashup Service for the Internet of Things Cloud Service Negotiation: A Research Roadmap Formal Modeling of Elastic Service-Based Business Processes Security-Aware Resource Allocation in Clouds Integrated Syntax and Semantic Validation for Services Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1