通道-空间融合感知网络用于准确快速的目标检测

Linhuang Wu, Xiujun Yang, Zhenjia Fan, Chunjun Wang, Z. Chen
{"title":"通道-空间融合感知网络用于准确快速的目标检测","authors":"Linhuang Wu, Xiujun Yang, Zhenjia Fan, Chunjun Wang, Z. Chen","doi":"10.1109/ICIP40778.2020.9191058","DOIUrl":null,"url":null,"abstract":"A major challenge of object detection is that accurate detector is limited by speed due to enormous network, while the lightweight detector can reach real-time but its weak representation ability leads to the expense of accuracy. To overcome the issue, we propose a channel–spatial fusion awareness module (CSFA) to improve the accuracy by enhancing the feature representation of network at the negligible cost of complexity. Given a feature map, our method exploits two parts sequentially, channel awareness and spatial awareness, to reconstruct feature map without deepening the network. Because of the property of CSFA for easy integrating into any layer of CNN architectures, we assemble this module into ResNet-18 and DLA-34 in CenterNet to form a CSFA detector. Results consistently show that CSFA-Net runs in a fairly fast speed, and achieves state-of-the-art, i.e., mAP of 81.12% on VOC2007 and AP of 43.2% on COCO.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Channel–Spatial fusion aware net for accurate and fast object Detection\",\"authors\":\"Linhuang Wu, Xiujun Yang, Zhenjia Fan, Chunjun Wang, Z. Chen\",\"doi\":\"10.1109/ICIP40778.2020.9191058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major challenge of object detection is that accurate detector is limited by speed due to enormous network, while the lightweight detector can reach real-time but its weak representation ability leads to the expense of accuracy. To overcome the issue, we propose a channel–spatial fusion awareness module (CSFA) to improve the accuracy by enhancing the feature representation of network at the negligible cost of complexity. Given a feature map, our method exploits two parts sequentially, channel awareness and spatial awareness, to reconstruct feature map without deepening the network. Because of the property of CSFA for easy integrating into any layer of CNN architectures, we assemble this module into ResNet-18 and DLA-34 in CenterNet to form a CSFA detector. Results consistently show that CSFA-Net runs in a fairly fast speed, and achieves state-of-the-art, i.e., mAP of 81.12% on VOC2007 and AP of 43.2% on COCO.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目标检测面临的一个主要挑战是,由于庞大的网络,精确的检测器受到速度的限制,而轻量级检测器虽然可以达到实时性,但其表示能力较弱,导致准确性的损失。为了克服这个问题,我们提出了一种信道空间融合感知模块(CSFA),通过在可忽略的复杂性代价下增强网络的特征表示来提高准确性。对于给定的特征图,我们的方法在不深化网络的情况下,依次利用通道感知和空间感知两部分来重构特征图。由于CSFA易于集成到CNN架构的任何一层,我们将该模块组装到CenterNet中的ResNet-18和DLA-34中,形成CSFA检测器。结果一致表明,CSFA-Net的运行速度相当快,在VOC2007上的mAP为81.12%,在COCO上的AP为43.2%,达到了最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel–Spatial fusion aware net for accurate and fast object Detection
A major challenge of object detection is that accurate detector is limited by speed due to enormous network, while the lightweight detector can reach real-time but its weak representation ability leads to the expense of accuracy. To overcome the issue, we propose a channel–spatial fusion awareness module (CSFA) to improve the accuracy by enhancing the feature representation of network at the negligible cost of complexity. Given a feature map, our method exploits two parts sequentially, channel awareness and spatial awareness, to reconstruct feature map without deepening the network. Because of the property of CSFA for easy integrating into any layer of CNN architectures, we assemble this module into ResNet-18 and DLA-34 in CenterNet to form a CSFA detector. Results consistently show that CSFA-Net runs in a fairly fast speed, and achieves state-of-the-art, i.e., mAP of 81.12% on VOC2007 and AP of 43.2% on COCO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1