我的朋友泄露了我的隐私:社交网络中的隐私建模与分析

Lingjing Yu, Sri Mounica Motipalli, Dongwon Lee, Peng Liu, Heng Xu, Qingyun Liu, Jianlong Tan, Bo Luo
{"title":"我的朋友泄露了我的隐私:社交网络中的隐私建模与分析","authors":"Lingjing Yu, Sri Mounica Motipalli, Dongwon Lee, Peng Liu, Heng Xu, Qingyun Liu, Jianlong Tan, Bo Luo","doi":"10.1145/3205977.3205981","DOIUrl":null,"url":null,"abstract":"With the dramatically increasing participation in online social networks (OSNs), huge amount of private information becomes available on such sites. It is critical to preserve users' privacy without preventing them from socialization and sharing. Unfortunately, existing solutions fall short meeting such requirements. We argue that the key component of OSN privacy protection is protecting (sensitive) content -- privacy as having the ability to control information dissemination. We follow the concepts of private information boundaries and restricted access and limited control to introduce a social circle model. We articulate the formal constructs of this model and the desired properties for privacy protection in the model. We show that the social circle model is efficient yet practical, which provides certain level of privacy protection capabilities to users, while still facilitates socialization. We then utilize this model to analyze the most popular social network platforms on the Internet (Facebook, Google+, WeChat, etc), and demonstrate the potential privacy vulnerabilities in some social networks. Finally, we discuss the implications of the analysis, and possible future directions.","PeriodicalId":423087,"journal":{"name":"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"My Friend Leaks My Privacy: Modeling and Analyzing Privacy in Social Networks\",\"authors\":\"Lingjing Yu, Sri Mounica Motipalli, Dongwon Lee, Peng Liu, Heng Xu, Qingyun Liu, Jianlong Tan, Bo Luo\",\"doi\":\"10.1145/3205977.3205981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the dramatically increasing participation in online social networks (OSNs), huge amount of private information becomes available on such sites. It is critical to preserve users' privacy without preventing them from socialization and sharing. Unfortunately, existing solutions fall short meeting such requirements. We argue that the key component of OSN privacy protection is protecting (sensitive) content -- privacy as having the ability to control information dissemination. We follow the concepts of private information boundaries and restricted access and limited control to introduce a social circle model. We articulate the formal constructs of this model and the desired properties for privacy protection in the model. We show that the social circle model is efficient yet practical, which provides certain level of privacy protection capabilities to users, while still facilitates socialization. We then utilize this model to analyze the most popular social network platforms on the Internet (Facebook, Google+, WeChat, etc), and demonstrate the potential privacy vulnerabilities in some social networks. Finally, we discuss the implications of the analysis, and possible future directions.\",\"PeriodicalId\":423087,\"journal\":{\"name\":\"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3205977.3205981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205977.3205981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

随着在线社交网络(OSNs)的参与急剧增加,大量的私人信息可以在这些网站上获得。在不阻止用户进行社交和分享的情况下保护他们的隐私至关重要。不幸的是,现有的解决方案无法满足这些需求。我们认为OSN隐私保护的关键部分是保护(敏感)内容——隐私具有控制信息传播的能力。我们遵循私人信息边界和限制访问和限制控制的概念,引入社交圈模型。我们阐明了该模型的形式化构造和模型中隐私保护所需的属性。我们证明了社交圈模式是高效且实用的,在为用户提供一定程度的隐私保护能力的同时,仍然有利于社交。然后,我们利用该模型分析了互联网上最流行的社交网络平台(Facebook,谷歌+,微信等),并展示了一些社交网络中潜在的隐私漏洞。最后,我们讨论了分析的意义,以及可能的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
My Friend Leaks My Privacy: Modeling and Analyzing Privacy in Social Networks
With the dramatically increasing participation in online social networks (OSNs), huge amount of private information becomes available on such sites. It is critical to preserve users' privacy without preventing them from socialization and sharing. Unfortunately, existing solutions fall short meeting such requirements. We argue that the key component of OSN privacy protection is protecting (sensitive) content -- privacy as having the ability to control information dissemination. We follow the concepts of private information boundaries and restricted access and limited control to introduce a social circle model. We articulate the formal constructs of this model and the desired properties for privacy protection in the model. We show that the social circle model is efficient yet practical, which provides certain level of privacy protection capabilities to users, while still facilitates socialization. We then utilize this model to analyze the most popular social network platforms on the Internet (Facebook, Google+, WeChat, etc), and demonstrate the potential privacy vulnerabilities in some social networks. Finally, we discuss the implications of the analysis, and possible future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parametric RBAC Maintenance via Max-SAT Sensing or Watching?: Balancing Utility and Privacy in Sensing Systems via Collection and Enforcement Mechanisms Privacy-Aware Risk-Adaptive Access Control in Health Information Systems using Topic Models Network Policy Enforcement Using Transactions: The NEUTRON Approach Access Control Enforcement within MQTT-based Internet of Things Ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1