基于隐私保护框架的虚拟货币异常交易检测与预警

Tong Zhu, Chenyang Liao, Lanting Guo, Ziyang Zhou, Wenwen Ruan, Wenhao Wang, Xinyu Li, Qingfu Zhang, Hao Zheng, Shuang Wang, Yuetong Liu
{"title":"基于隐私保护框架的虚拟货币异常交易检测与预警","authors":"Tong Zhu, Chenyang Liao, Lanting Guo, Ziyang Zhou, Wenwen Ruan, Wenhao Wang, Xinyu Li, Qingfu Zhang, Hao Zheng, Shuang Wang, Yuetong Liu","doi":"10.1109/SmartCloud55982.2022.00018","DOIUrl":null,"url":null,"abstract":"For detecting and warning abnormal transaction of virtual cryptocurrency: we proposed PROTECTION (PRivacy-preserving suspiciOus Transaction detECTION), and proposed big matrix inversion algorithm to solve the problem that the physics of TEE is easily limited by memory size. Based on the privacy protection framework, we proposed three supervised learning algorithms to detect and warn abnormal transactions, they respectively are the federated logistic regression model(VERTIGO) over vertically partitioned data, the federated random forest model over vertically partitioned data, and the federated multilayer perceptron model over vertically partitioned data. According to the experimental results, we found that among the three algorithms, the federated logistic regression model(VERTIGO) over vertically partitioned data is ahead of the federated random forest model over vertically partitioned data, and the federated multilayer perceptron model over vertically partitioned data in all indicators, it has a good effect on detecting abnormal transaction of virtual cryptocurrency.","PeriodicalId":104366,"journal":{"name":"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting and Warning Abnormal Transaction of Virtual Cryptocurrency Based on Privacy Protection Framework\",\"authors\":\"Tong Zhu, Chenyang Liao, Lanting Guo, Ziyang Zhou, Wenwen Ruan, Wenhao Wang, Xinyu Li, Qingfu Zhang, Hao Zheng, Shuang Wang, Yuetong Liu\",\"doi\":\"10.1109/SmartCloud55982.2022.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For detecting and warning abnormal transaction of virtual cryptocurrency: we proposed PROTECTION (PRivacy-preserving suspiciOus Transaction detECTION), and proposed big matrix inversion algorithm to solve the problem that the physics of TEE is easily limited by memory size. Based on the privacy protection framework, we proposed three supervised learning algorithms to detect and warn abnormal transactions, they respectively are the federated logistic regression model(VERTIGO) over vertically partitioned data, the federated random forest model over vertically partitioned data, and the federated multilayer perceptron model over vertically partitioned data. According to the experimental results, we found that among the three algorithms, the federated logistic regression model(VERTIGO) over vertically partitioned data is ahead of the federated random forest model over vertically partitioned data, and the federated multilayer perceptron model over vertically partitioned data in all indicators, it has a good effect on detecting abnormal transaction of virtual cryptocurrency.\",\"PeriodicalId\":104366,\"journal\":{\"name\":\"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartCloud55982.2022.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartCloud55982.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于虚拟加密货币异常交易的检测和预警:提出了PROTECTION (PRivacy-preserving suspiciOus transaction detECTION,隐私保护可疑交易检测),并提出大矩阵反演算法,解决TEE物理容易受内存大小限制的问题。在隐私保护框架的基础上,提出了三种用于异常交易检测和预警的监督学习算法,分别是垂直分区数据的联邦逻辑回归模型(VERTIGO)、垂直分区数据的联邦随机森林模型和垂直分区数据的联邦多层感知器模型。根据实验结果,我们发现在三种算法中,垂直分区数据上的联邦逻辑回归模型(VERTIGO)优于垂直分区数据上的联邦随机森林模型,垂直分区数据上的联邦多层感知器模型在所有指标上都优于虚拟货币异常交易检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting and Warning Abnormal Transaction of Virtual Cryptocurrency Based on Privacy Protection Framework
For detecting and warning abnormal transaction of virtual cryptocurrency: we proposed PROTECTION (PRivacy-preserving suspiciOus Transaction detECTION), and proposed big matrix inversion algorithm to solve the problem that the physics of TEE is easily limited by memory size. Based on the privacy protection framework, we proposed three supervised learning algorithms to detect and warn abnormal transactions, they respectively are the federated logistic regression model(VERTIGO) over vertically partitioned data, the federated random forest model over vertically partitioned data, and the federated multilayer perceptron model over vertically partitioned data. According to the experimental results, we found that among the three algorithms, the federated logistic regression model(VERTIGO) over vertically partitioned data is ahead of the federated random forest model over vertically partitioned data, and the federated multilayer perceptron model over vertically partitioned data in all indicators, it has a good effect on detecting abnormal transaction of virtual cryptocurrency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Impacts of JavaScript-Based Encryption of HTML5 Web Storage for Enhanced Privacy A Deep-Learning-Based Optimal Auction for Vehicular Edge Computing Resource Allocation TDH: An Efficient One-stop Enterprise-level Big Data Platform Survey of Research on Named Entity Recognition in Cyber Threat Intelligence A Semantic Segmentation Algorithm for Distributed Energy Data Storage Optimization based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1