信号处理应用的自举序列概率比检验

Martin Gölz, Michael Fauss, A. Zoubir
{"title":"信号处理应用的自举序列概率比检验","authors":"Martin Gölz, Michael Fauss, A. Zoubir","doi":"10.1109/CAMSAP.2017.8313175","DOIUrl":null,"url":null,"abstract":"A new algorithm is presented that combines the bootstrap and the generalized sequential probability ratio test. The latter replaces all unknown parameters with suitable estimates so that the test statistic is subject to uncertainty. The question of how to choose the decision thresholds for the generalized sequential probability ratio test such that it fulfills given constraints on the error probabilities is still open. We propose to address this problem not by adjusting the thresholds, but by bootstrapping the estimates of the unknown parameters and constructing confidence intervals for the test statistic. The stopping rule of the test is then defined in terms of this confidence interval instead of the test statistic itself. The proposed procedure is reliable and admits the beneficial properties of sequential tests in terms of the expected number of samples. It can hence be useful for applications where making observations is expensive or time critical, as is often the case in Internet-of-Things, data analytics or wireless communications.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A bootstrapped sequential probability ratio test for signal processing applications\",\"authors\":\"Martin Gölz, Michael Fauss, A. Zoubir\",\"doi\":\"10.1109/CAMSAP.2017.8313175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm is presented that combines the bootstrap and the generalized sequential probability ratio test. The latter replaces all unknown parameters with suitable estimates so that the test statistic is subject to uncertainty. The question of how to choose the decision thresholds for the generalized sequential probability ratio test such that it fulfills given constraints on the error probabilities is still open. We propose to address this problem not by adjusting the thresholds, but by bootstrapping the estimates of the unknown parameters and constructing confidence intervals for the test statistic. The stopping rule of the test is then defined in terms of this confidence interval instead of the test statistic itself. The proposed procedure is reliable and admits the beneficial properties of sequential tests in terms of the expected number of samples. It can hence be useful for applications where making observations is expensive or time critical, as is often the case in Internet-of-Things, data analytics or wireless communications.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种结合自举法和广义序列概率比检验的新算法。后者用合适的估计替换所有未知参数,从而使测试统计量受到不确定性的影响。如何选择广义序列概率比检验的决策阈值,使其满足给定的误差概率约束,仍然是一个有待解决的问题。我们建议不通过调整阈值来解决这个问题,而是通过自提未知参数的估计和构造检验统计量的置信区间来解决这个问题。然后根据这个置信区间而不是测试统计量本身来定义测试的停止规则。所提出的程序是可靠的,并承认顺序试验的有益性质,就预期的样本数量而言。因此,它可以用于观察昂贵或时间紧迫的应用程序,例如物联网,数据分析或无线通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A bootstrapped sequential probability ratio test for signal processing applications
A new algorithm is presented that combines the bootstrap and the generalized sequential probability ratio test. The latter replaces all unknown parameters with suitable estimates so that the test statistic is subject to uncertainty. The question of how to choose the decision thresholds for the generalized sequential probability ratio test such that it fulfills given constraints on the error probabilities is still open. We propose to address this problem not by adjusting the thresholds, but by bootstrapping the estimates of the unknown parameters and constructing confidence intervals for the test statistic. The stopping rule of the test is then defined in terms of this confidence interval instead of the test statistic itself. The proposed procedure is reliable and admits the beneficial properties of sequential tests in terms of the expected number of samples. It can hence be useful for applications where making observations is expensive or time critical, as is often the case in Internet-of-Things, data analytics or wireless communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved DOA estimators using partial relaxation approach Energy efficient transmission in MIMO interference channels with QoS constraints Restricted update sequential matrix diagonalisation for parahermitian matrices Sparse Bayesian learning with dictionary refinement for super-resolution through time L1-PCA signal subspace identification for non-sphered data under the ICA model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1