图着色问题的蚁群算法

Ehsan Salari, K. Eshghi
{"title":"图着色问题的蚁群算法","authors":"Ehsan Salari, K. Eshghi","doi":"10.1109/CIMA.2005.1662331","DOIUrl":null,"url":null,"abstract":"Ant colony optimization (ACO) is a well-known metaheuristic in which a colony of artificial ants cooperate in exploring good solutions to a combinatorial optimization problem. In this paper, an ACO algorithm is presented for the graph coloring problem. This ACO algorithm conforms to max-min ant system structure and exploits a local search heuristic to improve its performance. Experimental results on DIMACS test instances show improvements over existing ACO algorithms of the graph coloring problem","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"An ACO algorithm for graph coloring problem\",\"authors\":\"Ehsan Salari, K. Eshghi\",\"doi\":\"10.1109/CIMA.2005.1662331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant colony optimization (ACO) is a well-known metaheuristic in which a colony of artificial ants cooperate in exploring good solutions to a combinatorial optimization problem. In this paper, an ACO algorithm is presented for the graph coloring problem. This ACO algorithm conforms to max-min ant system structure and exploits a local search heuristic to improve its performance. Experimental results on DIMACS test instances show improvements over existing ACO algorithms of the graph coloring problem\",\"PeriodicalId\":306045,\"journal\":{\"name\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMA.2005.1662331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

蚁群优化(Ant colony optimization, ACO)是一种著名的元启发式算法,其中一群人工蚂蚁合作寻找组合优化问题的最佳解。本文提出了一种求解图着色问题的蚁群算法。蚁群算法遵循最大最小系统结构,利用局部搜索启发式算法提高算法性能。在DIMACS测试实例上的实验结果表明,该算法在图着色问题上比现有的蚁群算法有了改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ACO algorithm for graph coloring problem
Ant colony optimization (ACO) is a well-known metaheuristic in which a colony of artificial ants cooperate in exploring good solutions to a combinatorial optimization problem. In this paper, an ACO algorithm is presented for the graph coloring problem. This ACO algorithm conforms to max-min ant system structure and exploits a local search heuristic to improve its performance. Experimental results on DIMACS test instances show improvements over existing ACO algorithms of the graph coloring problem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparison of fuzzy, state space with direct eigenstructure assignment, and PID controller on linearized MIMO plant model Measurement of the cross-sectional contour of H-shaped steel using multiple stereo pairs Feature selection based on bootstrapping Eigenvector methods for automated detection of time-varying biomedical signals Animal toxins: what features differentiate pore blockers from gate modifiers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1