基于Contourlet变换的多尺度多向图像去噪算法

Bei Li, Xin Li, Shuxun Wang, Haifeng Li
{"title":"基于Contourlet变换的多尺度多向图像去噪算法","authors":"Bei Li, Xin Li, Shuxun Wang, Haifeng Li","doi":"10.1109/IIH-MSP.2006.19","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel image denoising algorithm in Contourlet domain. The Contourlet transform is adopted by virtual of its advantages over the Wavelet transform in order to obtain a flexible multiresolution, local, and directional image expansion using contour segments, it is good at isolating the smoothness along the contours. We present a weighing factor which submits to the negative exponential distribution, it can combine the hard thresholding function with the soft thresholding, the new thresholding function is continuous[4]. We adapt different thresholdings on different scales and different directions to get better denoising results. Experimental results demonstrate that the proposed algorithm improves the SNR on a certain extent.","PeriodicalId":272579,"journal":{"name":"2006 International Conference on Intelligent Information Hiding and Multimedia","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Multiscale and Multidirectional Image Denoising Algorithm Based on Contourlet Transform\",\"authors\":\"Bei Li, Xin Li, Shuxun Wang, Haifeng Li\",\"doi\":\"10.1109/IIH-MSP.2006.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel image denoising algorithm in Contourlet domain. The Contourlet transform is adopted by virtual of its advantages over the Wavelet transform in order to obtain a flexible multiresolution, local, and directional image expansion using contour segments, it is good at isolating the smoothness along the contours. We present a weighing factor which submits to the negative exponential distribution, it can combine the hard thresholding function with the soft thresholding, the new thresholding function is continuous[4]. We adapt different thresholdings on different scales and different directions to get better denoising results. Experimental results demonstrate that the proposed algorithm improves the SNR on a certain extent.\",\"PeriodicalId\":272579,\"journal\":{\"name\":\"2006 International Conference on Intelligent Information Hiding and Multimedia\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Intelligent Information Hiding and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIH-MSP.2006.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Intelligent Information Hiding and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2006.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种新的Contourlet域图像去噪算法。基于Contourlet变换相对于小波变换的优点,虚拟机采用Contourlet变换对轮廓段进行灵活的多分辨率、局部和定向的图像展开,它善于隔离沿轮廓的平滑性。我们提出了一个服从负指数分布的权重因子,它可以将硬阈值函数和软阈值函数结合起来,新的阈值函数是连续的[4]。为了得到更好的去噪效果,我们在不同的尺度和方向上采用了不同的阈值。实验结果表明,该算法在一定程度上提高了信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multiscale and Multidirectional Image Denoising Algorithm Based on Contourlet Transform
In this paper, we propose a novel image denoising algorithm in Contourlet domain. The Contourlet transform is adopted by virtual of its advantages over the Wavelet transform in order to obtain a flexible multiresolution, local, and directional image expansion using contour segments, it is good at isolating the smoothness along the contours. We present a weighing factor which submits to the negative exponential distribution, it can combine the hard thresholding function with the soft thresholding, the new thresholding function is continuous[4]. We adapt different thresholdings on different scales and different directions to get better denoising results. Experimental results demonstrate that the proposed algorithm improves the SNR on a certain extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adjustable multipath flatted-hexagon search algorithm for block motion estimation An Improved Design and Implementation of Chinese Name Card Recognition System on Mobile Devices A Novel Low-IF Topology for High Performance Integrated Receivers Improved Guided Position Scrambling for Digital Watermarking Decoder-Friendly Subpel MV Selection for H.264/AVC Video Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1