设备上的机器学习诊断帕金森病从手绘文物

Sai Vaibhav Polisetti Venkata, Shubhankar Sabat, C. Deshpande, Asiful Arefeen, Daniel Peterson, H. Ghasemzadeh
{"title":"设备上的机器学习诊断帕金森病从手绘文物","authors":"Sai Vaibhav Polisetti Venkata, Shubhankar Sabat, C. Deshpande, Asiful Arefeen, Daniel Peterson, H. Ghasemzadeh","doi":"10.1109/BSN56160.2022.9928465","DOIUrl":null,"url":null,"abstract":"Effective diagnosis of neuro-degenerative diseases is critical to providing early treatments, which in turn can lead to substantial savings in medical costs. Machine learning models can help with the diagnosis of such diseases like Parkinson’s and aid in assessing disease symptoms. This work introduces a novel system that integrates pervasive computing, mobile sensing, and machine learning to classify hand-drawn images and provide diagnostic insights for the screening of Parkinson’s disease patients. We designed a computational framework that combines data augmentation techniques with optimized convolutional neural network design for on-device and real-time image classification. We assess the performance of the proposed system using two datasets of images of Archimedean spirals drawn by hand and demonstrate that our approach achieves 76% and 83% accuracy respectively. Thanks to 4x memory reduction via integer quantization, our system can run fast on an Android smartphone. Our study demonstrates that pervasive computing may offer an inexpensive and effective tool for early diagnosis of Parkinson’s disease1.","PeriodicalId":150990,"journal":{"name":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Device Machine Learning for Diagnosis of Parkinson’s Disease from Hand Drawn Artifacts\",\"authors\":\"Sai Vaibhav Polisetti Venkata, Shubhankar Sabat, C. Deshpande, Asiful Arefeen, Daniel Peterson, H. Ghasemzadeh\",\"doi\":\"10.1109/BSN56160.2022.9928465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective diagnosis of neuro-degenerative diseases is critical to providing early treatments, which in turn can lead to substantial savings in medical costs. Machine learning models can help with the diagnosis of such diseases like Parkinson’s and aid in assessing disease symptoms. This work introduces a novel system that integrates pervasive computing, mobile sensing, and machine learning to classify hand-drawn images and provide diagnostic insights for the screening of Parkinson’s disease patients. We designed a computational framework that combines data augmentation techniques with optimized convolutional neural network design for on-device and real-time image classification. We assess the performance of the proposed system using two datasets of images of Archimedean spirals drawn by hand and demonstrate that our approach achieves 76% and 83% accuracy respectively. Thanks to 4x memory reduction via integer quantization, our system can run fast on an Android smartphone. Our study demonstrates that pervasive computing may offer an inexpensive and effective tool for early diagnosis of Parkinson’s disease1.\",\"PeriodicalId\":150990,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN56160.2022.9928465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN56160.2022.9928465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病的有效诊断对于提供早期治疗至关重要,这反过来又可以大大节省医疗费用。机器学习模型可以帮助诊断帕金森病等疾病,并帮助评估疾病症状。这项工作介绍了一种集成了普然计算、移动传感和机器学习的新系统,用于对手绘图像进行分类,并为帕金森病患者的筛查提供诊断见解。我们设计了一个计算框架,将数据增强技术与优化的卷积神经网络设计相结合,用于设备上和实时图像分类。我们使用两个手工绘制的阿基米德螺旋图像数据集来评估所提出系统的性能,并证明我们的方法分别达到76%和83%的准确率。由于通过整数量化减少了4倍的内存,我们的系统可以在Android智能手机上快速运行。我们的研究表明,普适计算可能为帕金森病的早期诊断提供一种廉价而有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-Device Machine Learning for Diagnosis of Parkinson’s Disease from Hand Drawn Artifacts
Effective diagnosis of neuro-degenerative diseases is critical to providing early treatments, which in turn can lead to substantial savings in medical costs. Machine learning models can help with the diagnosis of such diseases like Parkinson’s and aid in assessing disease symptoms. This work introduces a novel system that integrates pervasive computing, mobile sensing, and machine learning to classify hand-drawn images and provide diagnostic insights for the screening of Parkinson’s disease patients. We designed a computational framework that combines data augmentation techniques with optimized convolutional neural network design for on-device and real-time image classification. We assess the performance of the proposed system using two datasets of images of Archimedean spirals drawn by hand and demonstrate that our approach achieves 76% and 83% accuracy respectively. Thanks to 4x memory reduction via integer quantization, our system can run fast on an Android smartphone. Our study demonstrates that pervasive computing may offer an inexpensive and effective tool for early diagnosis of Parkinson’s disease1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SixthSense: Smart Integrated Extreme Environment Health Monitor with Sensory Feedback for Enhanced Situation Awareness Real-Time Breathing Phase Detection Using Earbuds Microphone Finite Element Modeling of a Pressure Ulcers Preventive Bed for Neonates Prototype smartwatch device for prolonged physiological monitoring in remote environments Multimodal Time-Series Activity Forecasting for Adaptive Lifestyle Intervention Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1