{"title":"针对特定数据的最大子阵列问题优化","authors":"T. Rojek","doi":"10.5604/01.3001.0010.7507","DOIUrl":null,"url":null,"abstract":"The maximum subarray problem (MSP) is to the find maximum contiguous sum in an array. This paper describes a method of Kadanes algorithm (the state of the art) optimization for specific data (continuous sequences of zeros or negative real numbers). When the data are unfavourable, the modification of the algorithm causes a non significant performance loss (1% > decrease in performance). The modification does not improve time complexity but reduces the number of elementary operations. Various experimental data sets have been used to evaluate possible time efficiency improvement. For the most favourable data sets an increase in efficiency of 25% can be achieved.","PeriodicalId":142227,"journal":{"name":"Informatics, Control, Measurement in Economy and Environment Protection","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAXIMUM SUBARRAY PROBLEM OPTIMIZATION FOR SPECIFIC DATA\",\"authors\":\"T. Rojek\",\"doi\":\"10.5604/01.3001.0010.7507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum subarray problem (MSP) is to the find maximum contiguous sum in an array. This paper describes a method of Kadanes algorithm (the state of the art) optimization for specific data (continuous sequences of zeros or negative real numbers). When the data are unfavourable, the modification of the algorithm causes a non significant performance loss (1% > decrease in performance). The modification does not improve time complexity but reduces the number of elementary operations. Various experimental data sets have been used to evaluate possible time efficiency improvement. For the most favourable data sets an increase in efficiency of 25% can be achieved.\",\"PeriodicalId\":142227,\"journal\":{\"name\":\"Informatics, Control, Measurement in Economy and Environment Protection\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics, Control, Measurement in Economy and Environment Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0010.7507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics, Control, Measurement in Economy and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0010.7507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MAXIMUM SUBARRAY PROBLEM OPTIMIZATION FOR SPECIFIC DATA
The maximum subarray problem (MSP) is to the find maximum contiguous sum in an array. This paper describes a method of Kadanes algorithm (the state of the art) optimization for specific data (continuous sequences of zeros or negative real numbers). When the data are unfavourable, the modification of the algorithm causes a non significant performance loss (1% > decrease in performance). The modification does not improve time complexity but reduces the number of elementary operations. Various experimental data sets have been used to evaluate possible time efficiency improvement. For the most favourable data sets an increase in efficiency of 25% can be achieved.