{"title":"实时异常检测在H.264压缩视频","authors":"Sovan Biswas, R. Venkatesh Babu","doi":"10.1109/NCVPRIPG.2013.6776164","DOIUrl":null,"url":null,"abstract":"Real time anomaly detection is the need of the hour for any security applications. In this paper, we have proposed a real-time anomaly detection algorithm by utilizing cues from the motion vectors in H.264/AVC compressed domain. The discussed work is principally motivated by the observation that motion vectors (MVs) exhibit different characteristics during anomaly. We have observed that H.264 motion vector magnitude contains relevant information which can be used to model the usual behavior (UB) effectively. This is subsequently extended to detect abnormality/anomaly based on the probability of occurrence of a behavior. Additionally, we have suggested a hierarchical approach through Motion Pyramid for High Resolution videos to further increase the detection rate. The proposed algorithm has performed extremely well on UMN and Peds Anomaly Detection Video datasets, with a detection speed of >150 and 65-75 frames per sec in respective datasets resulting in more than 200× speedup along with comparable accuracy to pixel domain state-of-the-art algorithms.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Real time anomaly detection in H.264 compressed videos\",\"authors\":\"Sovan Biswas, R. Venkatesh Babu\",\"doi\":\"10.1109/NCVPRIPG.2013.6776164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real time anomaly detection is the need of the hour for any security applications. In this paper, we have proposed a real-time anomaly detection algorithm by utilizing cues from the motion vectors in H.264/AVC compressed domain. The discussed work is principally motivated by the observation that motion vectors (MVs) exhibit different characteristics during anomaly. We have observed that H.264 motion vector magnitude contains relevant information which can be used to model the usual behavior (UB) effectively. This is subsequently extended to detect abnormality/anomaly based on the probability of occurrence of a behavior. Additionally, we have suggested a hierarchical approach through Motion Pyramid for High Resolution videos to further increase the detection rate. The proposed algorithm has performed extremely well on UMN and Peds Anomaly Detection Video datasets, with a detection speed of >150 and 65-75 frames per sec in respective datasets resulting in more than 200× speedup along with comparable accuracy to pixel domain state-of-the-art algorithms.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

实时异常检测是任何安全应用程序都需要的。在本文中,我们提出了一种利用H.264/AVC压缩域中的运动矢量线索的实时异常检测算法。讨论的工作主要是由于观察到运动向量(mv)在异常期间表现出不同的特征。我们已经观察到H.264运动矢量幅度包含了可以用来有效地模拟通常行为(UB)的相关信息。这随后扩展到基于行为发生的概率来检测异常/异常。此外,我们还提出了一种通过运动金字塔对高分辨率视频进行分层的方法,以进一步提高检测率。所提出的算法在UMN和Peds异常检测视频数据集上表现非常好,在各自的数据集上的检测速度为bb0 150和65-75帧/秒,导致超过200倍的加速以及与像素域最先进算法相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real time anomaly detection in H.264 compressed videos
Real time anomaly detection is the need of the hour for any security applications. In this paper, we have proposed a real-time anomaly detection algorithm by utilizing cues from the motion vectors in H.264/AVC compressed domain. The discussed work is principally motivated by the observation that motion vectors (MVs) exhibit different characteristics during anomaly. We have observed that H.264 motion vector magnitude contains relevant information which can be used to model the usual behavior (UB) effectively. This is subsequently extended to detect abnormality/anomaly based on the probability of occurrence of a behavior. Additionally, we have suggested a hierarchical approach through Motion Pyramid for High Resolution videos to further increase the detection rate. The proposed algorithm has performed extremely well on UMN and Peds Anomaly Detection Video datasets, with a detection speed of >150 and 65-75 frames per sec in respective datasets resulting in more than 200× speedup along with comparable accuracy to pixel domain state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1