基于频繁模式的低采样率轨迹映射匹配

Yukun Huang, Weixiong Rao, Zhiqiang Zhang, Peng Zhao, Mingxuan Yuan, Jia Zeng
{"title":"基于频繁模式的低采样率轨迹映射匹配","authors":"Yukun Huang, Weixiong Rao, Zhiqiang Zhang, Peng Zhao, Mingxuan Yuan, Jia Zeng","doi":"10.1109/MDM.2018.00046","DOIUrl":null,"url":null,"abstract":"Map-matching is an important preprocessing task for many location-based services (LBS). It projects each GPS point in trajectory data onto digital maps. The state of art work typically employed the Hidden Markov model (HMM) by shortest path computation. Such shortest path computation may not work very well for very low sampling rate trajectory data, leading to low matching precision and high running time. To solve this problem, this paper, we first identify the frequent patterns from historical trajectory data and next perform the map matching for higher precision and faster running time. Since the identified frequent patterns indicate the mobility behaviours for the majority of trajectories, the map matching thus has chance to satisfy the matching precision with high confidence. Moreover, the proposed FP-forest structure can greatly speedup the lookup of frequent paths and lead to high computation efficiency. Our experiments on real world data set validate that the proposed FP-matching outperforms state of arts in terms of effectiveness and efficiency.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Frequent Pattern-Based Map-Matching on Low Sampling Rate Trajectories\",\"authors\":\"Yukun Huang, Weixiong Rao, Zhiqiang Zhang, Peng Zhao, Mingxuan Yuan, Jia Zeng\",\"doi\":\"10.1109/MDM.2018.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Map-matching is an important preprocessing task for many location-based services (LBS). It projects each GPS point in trajectory data onto digital maps. The state of art work typically employed the Hidden Markov model (HMM) by shortest path computation. Such shortest path computation may not work very well for very low sampling rate trajectory data, leading to low matching precision and high running time. To solve this problem, this paper, we first identify the frequent patterns from historical trajectory data and next perform the map matching for higher precision and faster running time. Since the identified frequent patterns indicate the mobility behaviours for the majority of trajectories, the map matching thus has chance to satisfy the matching precision with high confidence. Moreover, the proposed FP-forest structure can greatly speedup the lookup of frequent paths and lead to high computation efficiency. Our experiments on real world data set validate that the proposed FP-matching outperforms state of arts in terms of effectiveness and efficiency.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

地图匹配是许多基于位置服务(LBS)的重要预处理任务。它将轨迹数据中的每个GPS点投影到数字地图上。目前的研究通常采用隐马尔可夫模型(HMM)进行最短路径计算。这样的最短路径计算对于非常低采样率的轨迹数据可能不能很好地工作,导致匹配精度低,运行时间长。为了解决这一问题,本文首先从历史轨迹数据中识别出频繁模式,然后进行地图匹配,以获得更高的精度和更快的运行时间。由于识别的频繁模式表明了大多数轨迹的移动行为,因此地图匹配有机会以高置信度满足匹配精度。此外,所提出的FP-forest结构可以大大加快频繁路径的查找速度,提高计算效率。我们在真实世界数据集上的实验验证了所提出的fp匹配在有效性和效率方面优于目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequent Pattern-Based Map-Matching on Low Sampling Rate Trajectories
Map-matching is an important preprocessing task for many location-based services (LBS). It projects each GPS point in trajectory data onto digital maps. The state of art work typically employed the Hidden Markov model (HMM) by shortest path computation. Such shortest path computation may not work very well for very low sampling rate trajectory data, leading to low matching precision and high running time. To solve this problem, this paper, we first identify the frequent patterns from historical trajectory data and next perform the map matching for higher precision and faster running time. Since the identified frequent patterns indicate the mobility behaviours for the majority of trajectories, the map matching thus has chance to satisfy the matching precision with high confidence. Moreover, the proposed FP-forest structure can greatly speedup the lookup of frequent paths and lead to high computation efficiency. Our experiments on real world data set validate that the proposed FP-matching outperforms state of arts in terms of effectiveness and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMS: Managing Crowdsourced Indoor Signals with the Fingerprint Management Studio Stochastic Shortest Path Finding in Path-Centric Uncertain Road Networks Concept for Evaluation of Techniques for Trajectory Distance Measures VIPTRA: Visualization and Interactive Processing on Big Trajectory Data DCount - A Probabilistic Algorithm for Accurately Disaggregating Building Occupant Counts into Room Counts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1