Fraser Young, Li Zhang, Richard Jiang, Han Liu, Conor Wall
{"title":"一种基于深度学习的可穿戴医疗物联网设备,用于人工智能助听器自动化","authors":"Fraser Young, Li Zhang, Richard Jiang, Han Liu, Conor Wall","doi":"10.1109/ICMLC51923.2020.9469537","DOIUrl":null,"url":null,"abstract":"With the recent booming of artificial intelligence (AI), particularly deep learning techniques, digital healthcare is one of the prevalent areas that could gain benefits from AI-enabled functionality. This research presents a novel AI-enabled Internet of Things (IoT) device operating from the ESP-8266 platform capable of assisting those who suffer from impairment of hearing or deafness to communicate with others in conversations. In the proposed solution, a server application is created that leverages Google’s online speech recognition service to convert the received conversations into texts, then deployed to a micro-display attached to the glasses to display the conversation contents to deaf people, to enable and assist conversation as normal with the general population. Furthermore, in order to raise alert of traffic or dangerous scenarios, an ‘urban-emergency’ classifier is developed using a deep learning model, Inception-v4, with transfer learning to detect/recognize alerting/alarming sounds, such as a horn sound or a fire alarm, with texts generated to alert the prospective user. The training of Inception-v4 was carried out on a consumer desktop PC and then implemented into the AI-based IoT application. The empirical results indicate that the developed prototype system achieves an accuracy rate of 92% for sound recognition and classification with real-time performance.","PeriodicalId":170815,"journal":{"name":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Deep Learning Based Wearable Healthcare Iot Device for AI-Enabled Hearing Assistance Automation\",\"authors\":\"Fraser Young, Li Zhang, Richard Jiang, Han Liu, Conor Wall\",\"doi\":\"10.1109/ICMLC51923.2020.9469537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the recent booming of artificial intelligence (AI), particularly deep learning techniques, digital healthcare is one of the prevalent areas that could gain benefits from AI-enabled functionality. This research presents a novel AI-enabled Internet of Things (IoT) device operating from the ESP-8266 platform capable of assisting those who suffer from impairment of hearing or deafness to communicate with others in conversations. In the proposed solution, a server application is created that leverages Google’s online speech recognition service to convert the received conversations into texts, then deployed to a micro-display attached to the glasses to display the conversation contents to deaf people, to enable and assist conversation as normal with the general population. Furthermore, in order to raise alert of traffic or dangerous scenarios, an ‘urban-emergency’ classifier is developed using a deep learning model, Inception-v4, with transfer learning to detect/recognize alerting/alarming sounds, such as a horn sound or a fire alarm, with texts generated to alert the prospective user. The training of Inception-v4 was carried out on a consumer desktop PC and then implemented into the AI-based IoT application. The empirical results indicate that the developed prototype system achieves an accuracy rate of 92% for sound recognition and classification with real-time performance.\",\"PeriodicalId\":170815,\"journal\":{\"name\":\"2020 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC51923.2020.9469537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC51923.2020.9469537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Learning Based Wearable Healthcare Iot Device for AI-Enabled Hearing Assistance Automation
With the recent booming of artificial intelligence (AI), particularly deep learning techniques, digital healthcare is one of the prevalent areas that could gain benefits from AI-enabled functionality. This research presents a novel AI-enabled Internet of Things (IoT) device operating from the ESP-8266 platform capable of assisting those who suffer from impairment of hearing or deafness to communicate with others in conversations. In the proposed solution, a server application is created that leverages Google’s online speech recognition service to convert the received conversations into texts, then deployed to a micro-display attached to the glasses to display the conversation contents to deaf people, to enable and assist conversation as normal with the general population. Furthermore, in order to raise alert of traffic or dangerous scenarios, an ‘urban-emergency’ classifier is developed using a deep learning model, Inception-v4, with transfer learning to detect/recognize alerting/alarming sounds, such as a horn sound or a fire alarm, with texts generated to alert the prospective user. The training of Inception-v4 was carried out on a consumer desktop PC and then implemented into the AI-based IoT application. The empirical results indicate that the developed prototype system achieves an accuracy rate of 92% for sound recognition and classification with real-time performance.