一种基于深度学习的可穿戴医疗物联网设备,用于人工智能助听器自动化

Fraser Young, Li Zhang, Richard Jiang, Han Liu, Conor Wall
{"title":"一种基于深度学习的可穿戴医疗物联网设备,用于人工智能助听器自动化","authors":"Fraser Young, Li Zhang, Richard Jiang, Han Liu, Conor Wall","doi":"10.1109/ICMLC51923.2020.9469537","DOIUrl":null,"url":null,"abstract":"With the recent booming of artificial intelligence (AI), particularly deep learning techniques, digital healthcare is one of the prevalent areas that could gain benefits from AI-enabled functionality. This research presents a novel AI-enabled Internet of Things (IoT) device operating from the ESP-8266 platform capable of assisting those who suffer from impairment of hearing or deafness to communicate with others in conversations. In the proposed solution, a server application is created that leverages Google’s online speech recognition service to convert the received conversations into texts, then deployed to a micro-display attached to the glasses to display the conversation contents to deaf people, to enable and assist conversation as normal with the general population. Furthermore, in order to raise alert of traffic or dangerous scenarios, an ‘urban-emergency’ classifier is developed using a deep learning model, Inception-v4, with transfer learning to detect/recognize alerting/alarming sounds, such as a horn sound or a fire alarm, with texts generated to alert the prospective user. The training of Inception-v4 was carried out on a consumer desktop PC and then implemented into the AI-based IoT application. The empirical results indicate that the developed prototype system achieves an accuracy rate of 92% for sound recognition and classification with real-time performance.","PeriodicalId":170815,"journal":{"name":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Deep Learning Based Wearable Healthcare Iot Device for AI-Enabled Hearing Assistance Automation\",\"authors\":\"Fraser Young, Li Zhang, Richard Jiang, Han Liu, Conor Wall\",\"doi\":\"10.1109/ICMLC51923.2020.9469537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the recent booming of artificial intelligence (AI), particularly deep learning techniques, digital healthcare is one of the prevalent areas that could gain benefits from AI-enabled functionality. This research presents a novel AI-enabled Internet of Things (IoT) device operating from the ESP-8266 platform capable of assisting those who suffer from impairment of hearing or deafness to communicate with others in conversations. In the proposed solution, a server application is created that leverages Google’s online speech recognition service to convert the received conversations into texts, then deployed to a micro-display attached to the glasses to display the conversation contents to deaf people, to enable and assist conversation as normal with the general population. Furthermore, in order to raise alert of traffic or dangerous scenarios, an ‘urban-emergency’ classifier is developed using a deep learning model, Inception-v4, with transfer learning to detect/recognize alerting/alarming sounds, such as a horn sound or a fire alarm, with texts generated to alert the prospective user. The training of Inception-v4 was carried out on a consumer desktop PC and then implemented into the AI-based IoT application. The empirical results indicate that the developed prototype system achieves an accuracy rate of 92% for sound recognition and classification with real-time performance.\",\"PeriodicalId\":170815,\"journal\":{\"name\":\"2020 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC51923.2020.9469537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC51923.2020.9469537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着最近人工智能(AI)的蓬勃发展,特别是深度学习技术,数字医疗保健是可以从人工智能功能中获益的流行领域之一。这项研究提出了一种新型的人工智能物联网(IoT)设备,该设备在ESP-8266平台上运行,能够帮助听力受损或耳聋的人与他人进行对话交流。在建议的解决方案中,创建了一个服务器应用程序,该应用程序利用谷歌的在线语音识别服务将接收到的对话转换为文本,然后部署到附加在眼镜上的微型显示器上,向聋哑人显示对话内容,以启用和协助与一般人群的正常对话。此外,为了提高对交通或危险场景的警报,使用深度学习模型Inception-v4开发了一个“城市紧急”分类器,通过迁移学习来检测/识别警报/报警声音,如喇叭声或火警,并生成文本来提醒潜在用户。Inception-v4的培训在消费者台式PC上进行,然后实施到基于ai的物联网应用中。实验结果表明,所开发的原型系统对声音的识别和分类准确率达到92%,具有实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Based Wearable Healthcare Iot Device for AI-Enabled Hearing Assistance Automation
With the recent booming of artificial intelligence (AI), particularly deep learning techniques, digital healthcare is one of the prevalent areas that could gain benefits from AI-enabled functionality. This research presents a novel AI-enabled Internet of Things (IoT) device operating from the ESP-8266 platform capable of assisting those who suffer from impairment of hearing or deafness to communicate with others in conversations. In the proposed solution, a server application is created that leverages Google’s online speech recognition service to convert the received conversations into texts, then deployed to a micro-display attached to the glasses to display the conversation contents to deaf people, to enable and assist conversation as normal with the general population. Furthermore, in order to raise alert of traffic or dangerous scenarios, an ‘urban-emergency’ classifier is developed using a deep learning model, Inception-v4, with transfer learning to detect/recognize alerting/alarming sounds, such as a horn sound or a fire alarm, with texts generated to alert the prospective user. The training of Inception-v4 was carried out on a consumer desktop PC and then implemented into the AI-based IoT application. The empirical results indicate that the developed prototype system achieves an accuracy rate of 92% for sound recognition and classification with real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral Decision Makings: Reconciling Behavioral Economics and Decision Systems Operating System Classification: A Minimalist Approach Research on Hotspot Mining Method of Twitter News Report Based on LDA and Sentiment Analysis Conservative Generalisation for Small Data Analytics –An Extended Lattice Machine Approach ICMLC 2020 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1