{"title":"用于WLAN/WiMAX应用的近距离耦合MIMO天线","authors":"L. Malviya, R. K. Panigrahi, M. V. Kartikeyan","doi":"10.1109/APMC.2016.7931471","DOIUrl":null,"url":null,"abstract":"MIMO is the key to the wireless communication to solve the multipath propagation related issues for 4G technologies. A proximity coupled compact MIMO antenna is proposed for WLAN/WiMAX applications. The overall size of the proposed MIMO on the low cost FR-4 dielectric substrate is 39.63 × 82.15 mm2. The measured result shows more than 10 dB of in-band isolation, envelope correlation coefficient of 0.1, and gain of more than 2.75 dBi in the whole band.","PeriodicalId":166478,"journal":{"name":"2016 Asia-Pacific Microwave Conference (APMC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Proximity coupled MIMO antenna for WLAN/WiMAX applications\",\"authors\":\"L. Malviya, R. K. Panigrahi, M. V. Kartikeyan\",\"doi\":\"10.1109/APMC.2016.7931471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MIMO is the key to the wireless communication to solve the multipath propagation related issues for 4G technologies. A proximity coupled compact MIMO antenna is proposed for WLAN/WiMAX applications. The overall size of the proposed MIMO on the low cost FR-4 dielectric substrate is 39.63 × 82.15 mm2. The measured result shows more than 10 dB of in-band isolation, envelope correlation coefficient of 0.1, and gain of more than 2.75 dBi in the whole band.\",\"PeriodicalId\":166478,\"journal\":{\"name\":\"2016 Asia-Pacific Microwave Conference (APMC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Microwave Conference (APMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APMC.2016.7931471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2016.7931471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proximity coupled MIMO antenna for WLAN/WiMAX applications
MIMO is the key to the wireless communication to solve the multipath propagation related issues for 4G technologies. A proximity coupled compact MIMO antenna is proposed for WLAN/WiMAX applications. The overall size of the proposed MIMO on the low cost FR-4 dielectric substrate is 39.63 × 82.15 mm2. The measured result shows more than 10 dB of in-band isolation, envelope correlation coefficient of 0.1, and gain of more than 2.75 dBi in the whole band.