磁性铁纳米颗粒固定化增强巴西橡胶树脱脂乳胶中clea -脂肪酶的动力学性能

F. Yusof, Nur Amalin Abd. Aziz Al Safi
{"title":"磁性铁纳米颗粒固定化增强巴西橡胶树脱脂乳胶中clea -脂肪酶的动力学性能","authors":"F. Yusof, Nur Amalin Abd. Aziz Al Safi","doi":"10.37934/arms.73.1.111","DOIUrl":null,"url":null,"abstract":"In this research, lipase recovered from the skim latex of Hevea brasiliensis was immobilized via cross-linked enzyme aggregates (CLEA) technology, while supported by magnetic nanoparticles (MNPs), for properties enhancement. Hybrid immobilization may have affected the kinetic performances of the biocatalysts. The kinetic performance of both MNP supported and unsupported CLEA-lipase, were evaluated based on the Michaelis-Menten model using p-nitrophenyl palmitate as the substrate. Three different linearization model equations were used to compute the kinetic properties, v_max and K_m, and a hyperbolic regression was conducted with computer software. Based on the best fitted model, v_max of MNP-CLEA-lipase, obtained from the Lineweaver-Burk plot (R2=0.9823), was 0.0023 µmol/min.mL, which is higher than CLEA-lipase (0.0015 µmol/min.mL), indicating it needs much higher substrate concentration to saturate the enzymatic sites to reach its maximum velocity. K_m for MNP-CLEA-lipase was 0.4400 µmol, compared to 0.5188 µmol for CLEA-lipase, inferring that it has a higher affinity towards substrates, whereby its rate will approach v_max with lower substrate concentration. Overall, this research demonstrated that wasteful by-products such as skim latex can be converted to useful value-added biocatalyst. A better understanding of the kinetic parameters of this newly produced MNP immobilized biocatalyst is necessary for its further development.","PeriodicalId":176840,"journal":{"name":"Journal of Advanced Research in Materials Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Kinetic Performance of CLEA-Lipase Extracted from Skim Latex of Hevea brasiliensis upon Immobilization on Magnetic Iron Nanoparticles\",\"authors\":\"F. Yusof, Nur Amalin Abd. Aziz Al Safi\",\"doi\":\"10.37934/arms.73.1.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, lipase recovered from the skim latex of Hevea brasiliensis was immobilized via cross-linked enzyme aggregates (CLEA) technology, while supported by magnetic nanoparticles (MNPs), for properties enhancement. Hybrid immobilization may have affected the kinetic performances of the biocatalysts. The kinetic performance of both MNP supported and unsupported CLEA-lipase, were evaluated based on the Michaelis-Menten model using p-nitrophenyl palmitate as the substrate. Three different linearization model equations were used to compute the kinetic properties, v_max and K_m, and a hyperbolic regression was conducted with computer software. Based on the best fitted model, v_max of MNP-CLEA-lipase, obtained from the Lineweaver-Burk plot (R2=0.9823), was 0.0023 µmol/min.mL, which is higher than CLEA-lipase (0.0015 µmol/min.mL), indicating it needs much higher substrate concentration to saturate the enzymatic sites to reach its maximum velocity. K_m for MNP-CLEA-lipase was 0.4400 µmol, compared to 0.5188 µmol for CLEA-lipase, inferring that it has a higher affinity towards substrates, whereby its rate will approach v_max with lower substrate concentration. Overall, this research demonstrated that wasteful by-products such as skim latex can be converted to useful value-added biocatalyst. A better understanding of the kinetic parameters of this newly produced MNP immobilized biocatalyst is necessary for its further development.\",\"PeriodicalId\":176840,\"journal\":{\"name\":\"Journal of Advanced Research in Materials Science\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/arms.73.1.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arms.73.1.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用交联酶聚合体(CLEA)技术对巴西橡胶树脱脂乳胶中提取的脂肪酶进行固定化,并在磁性纳米颗粒(MNPs)的支持下提高其性能。混合固定化可能会影响生物催化剂的动力学性能。以对棕榈酸对硝基苯为底物,基于Michaelis-Menten模型对MNP负载型和非负载型clea -脂肪酶的动力学性能进行了评价。采用三种不同的线性化模型方程计算了动力学性质v_max和K_m,并用计算机软件进行了双曲回归。根据最佳拟合模型,Lineweaver-Burk图得到mnp - clea -脂肪酶的v_max为0.0023µmol/min (R2=0.9823)。mL,高于clea -脂肪酶(0.0015µmol/min.mL),说明它需要更高的底物浓度才能使酶位点饱和,达到最大速度。mnp - clea -脂肪酶的K_m为0.4400µmol,而clea -脂肪酶的K_m为0.5188µmol,说明mnp - clea -脂肪酶对底物具有较高的亲和力,在底物浓度较低时,其速率接近v_max。总的来说,这项研究表明,浪费的副产品,如脱脂乳胶,可以转化为有用的增值生物催化剂。更好地了解这种新制备的MNP固定化生物催化剂的动力学参数,对其进一步开发具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Kinetic Performance of CLEA-Lipase Extracted from Skim Latex of Hevea brasiliensis upon Immobilization on Magnetic Iron Nanoparticles
In this research, lipase recovered from the skim latex of Hevea brasiliensis was immobilized via cross-linked enzyme aggregates (CLEA) technology, while supported by magnetic nanoparticles (MNPs), for properties enhancement. Hybrid immobilization may have affected the kinetic performances of the biocatalysts. The kinetic performance of both MNP supported and unsupported CLEA-lipase, were evaluated based on the Michaelis-Menten model using p-nitrophenyl palmitate as the substrate. Three different linearization model equations were used to compute the kinetic properties, v_max and K_m, and a hyperbolic regression was conducted with computer software. Based on the best fitted model, v_max of MNP-CLEA-lipase, obtained from the Lineweaver-Burk plot (R2=0.9823), was 0.0023 µmol/min.mL, which is higher than CLEA-lipase (0.0015 µmol/min.mL), indicating it needs much higher substrate concentration to saturate the enzymatic sites to reach its maximum velocity. K_m for MNP-CLEA-lipase was 0.4400 µmol, compared to 0.5188 µmol for CLEA-lipase, inferring that it has a higher affinity towards substrates, whereby its rate will approach v_max with lower substrate concentration. Overall, this research demonstrated that wasteful by-products such as skim latex can be converted to useful value-added biocatalyst. A better understanding of the kinetic parameters of this newly produced MNP immobilized biocatalyst is necessary for its further development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic and UV-VIS Optical Properties of Titanium-Silver Doped Composite Synthesized by Hydrothermal Method Enhancement of Acoustic Performance of Oil Palm Frond Natural Fibers by Substitution of Jute Fiber The Effect of Temperature on Catalytic Pyrolysis of HDPE Over Ni/Ce/Al2O3 Concrete Brick Properties Incorporating EPS and POFA as Replacement Materials Impact of Laser Intensities at Various DPI and Pixel Time on the Properties of Denim Garments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1