机器学习算法在社交网络用户自动分类中的应用

Bruno Vicente Alves de Lima, V. Machado
{"title":"机器学习算法在社交网络用户自动分类中的应用","authors":"Bruno Vicente Alves de Lima, V. Machado","doi":"10.1109/CASoN.2012.6412378","DOIUrl":null,"url":null,"abstract":"This work shows the results of an analysis of machine learning algorithms applied in automatic classification for the users of the social network called Scientia.Net. The tests were done using a database with 2000 users. The analysis identifies which algorithm performs better in automatic classification of users within a social network. The algorithms tested were Multilayer Perceptron, Support Vector Machine, Kohonen Network and K-means Algorithm.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine learning algorithms applied in automatic classification of social network users\",\"authors\":\"Bruno Vicente Alves de Lima, V. Machado\",\"doi\":\"10.1109/CASoN.2012.6412378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work shows the results of an analysis of machine learning algorithms applied in automatic classification for the users of the social network called Scientia.Net. The tests were done using a database with 2000 users. The analysis identifies which algorithm performs better in automatic classification of users within a social network. The algorithms tested were Multilayer Perceptron, Support Vector Machine, Kohonen Network and K-means Algorithm.\",\"PeriodicalId\":431370,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2012.6412378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项工作展示了对应用于社交网络Scientia.Net用户自动分类的机器学习算法的分析结果。这些测试是在一个有2000个用户的数据库中完成的。该分析确定了哪种算法在社交网络中的用户自动分类中表现更好。测试的算法有多层感知机、支持向量机、Kohonen网络和K-means算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning algorithms applied in automatic classification of social network users
This work shows the results of an analysis of machine learning algorithms applied in automatic classification for the users of the social network called Scientia.Net. The tests were done using a database with 2000 users. The analysis identifies which algorithm performs better in automatic classification of users within a social network. The algorithms tested were Multilayer Perceptron, Support Vector Machine, Kohonen Network and K-means Algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Optimum-Path Forest clustering through harmony Search and its applications for intrusion detection in computer networks Graph-based cross-validated committees ensembles Automatic sentiment analysis of Twitter messages Identifying focal patterns in social networks Ontology-based Negotiation of security requirements in cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1