使用标签传播的日志步骤中的图连通性

Paul Burkhardt
{"title":"使用标签传播的日志步骤中的图连通性","authors":"Paul Burkhardt","doi":"10.1142/S0129626421500213","DOIUrl":null,"url":null,"abstract":"The fastest deterministic algorithms for connected components take logarithmic time and perform superlinear work on a Parallel Random Access Machine (PRAM). These algorithms maintain a spanning forest by merging and compressing trees, which requires pointer-chasing operations that increase memory access latency and are limited to shared-memory systems. Many of these PRAM algorithms are also very complicated to implement. Another popular method is “leader-contraction” where the challenge is to select a constant fraction of leaders that are adjacent to a constant fraction of non-leaders with high probability, but this can require adding more edges than were in the original graph. Instead we investigate label propagation because it is deterministic, easy to implement, and does not rely on pointer-chasing. Label propagation exchanges representative labels within a component using simple graph traversal, but it is inherently difficult to complete in a sublinear number of steps. We are able to overcome the problems with label propagation for graph connectivity. We introduce a surprisingly simple framework for deterministic, undirected graph connectivity using label propagation that is easily adaptable to many computational models. It achieves logarithmic convergence independently of the number of processors and without increasing the edge count. We employ a novel method of propagating directed edges in alternating direction while performing minimum reduction on vertex labels. We present new algorithms in PRAM, Stream, and MapReduce. Given a simple, undirected graph [Formula: see text] with [Formula: see text] vertices, [Formula: see text] edges, our approach takes O(m) work each step, but we can only prove logarithmic convergence on a path graph. It was conjectured by Liu and Tarjan (2019) to take [Formula: see text] steps or possibly [Formula: see text] steps. Our experiments on a range of difficult graphs also suggest logarithmic convergence. We leave the proof of convergence as an open problem.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graph Connectivity in Log Steps Using Label Propagation\",\"authors\":\"Paul Burkhardt\",\"doi\":\"10.1142/S0129626421500213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fastest deterministic algorithms for connected components take logarithmic time and perform superlinear work on a Parallel Random Access Machine (PRAM). These algorithms maintain a spanning forest by merging and compressing trees, which requires pointer-chasing operations that increase memory access latency and are limited to shared-memory systems. Many of these PRAM algorithms are also very complicated to implement. Another popular method is “leader-contraction” where the challenge is to select a constant fraction of leaders that are adjacent to a constant fraction of non-leaders with high probability, but this can require adding more edges than were in the original graph. Instead we investigate label propagation because it is deterministic, easy to implement, and does not rely on pointer-chasing. Label propagation exchanges representative labels within a component using simple graph traversal, but it is inherently difficult to complete in a sublinear number of steps. We are able to overcome the problems with label propagation for graph connectivity. We introduce a surprisingly simple framework for deterministic, undirected graph connectivity using label propagation that is easily adaptable to many computational models. It achieves logarithmic convergence independently of the number of processors and without increasing the edge count. We employ a novel method of propagating directed edges in alternating direction while performing minimum reduction on vertex labels. We present new algorithms in PRAM, Stream, and MapReduce. Given a simple, undirected graph [Formula: see text] with [Formula: see text] vertices, [Formula: see text] edges, our approach takes O(m) work each step, but we can only prove logarithmic convergence on a path graph. It was conjectured by Liu and Tarjan (2019) to take [Formula: see text] steps or possibly [Formula: see text] steps. Our experiments on a range of difficult graphs also suggest logarithmic convergence. We leave the proof of convergence as an open problem.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129626421500213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626421500213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在并行随机存取机(PRAM)上,连接组件的最快确定性算法需要对数时间和超线性工作。这些算法通过合并和压缩树来维护生成林,这需要指针跟踪操作,这会增加内存访问延迟,并且仅限于共享内存系统。这些PRAM算法中的许多实现起来也非常复杂。另一种流行的方法是“领导者收缩”,其中的挑战是选择一个恒定比例的领导者,这些领导者与一个恒定比例的非领导者有高概率相邻,但这可能需要添加比原始图更多的边。相反,我们研究标签传播,因为它是确定性的,易于实现,并且不依赖于指针跟踪。标签传播使用简单的图遍历交换组件内的代表性标签,但在次线性的步骤中完成它本身就很困难。我们能够克服图连通性的标签传播问题。我们引入了一个非常简单的框架,用于使用标签传播的确定性无向图连接,该框架很容易适应许多计算模型。它独立于处理器数量实现对数收敛,并且不增加边缘计数。在对顶点标签进行最小约简的同时,我们采用了一种新的方法在交替方向上传播有向边。我们在PRAM, Stream和MapReduce中提出了新的算法。给定一个简单的无向图[公式:见文],有[公式:见文]顶点,[公式:见文]边,我们的方法每一步需要O(m)次工作,但我们只能证明路径图的对数收敛性。Liu和Tarjan(2019)推测采取[公式:见文]步骤或可能采取[公式:见文]步骤。我们在一系列复杂图上的实验也表明对数收敛。我们把收敛性的证明作为一个开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Connectivity in Log Steps Using Label Propagation
The fastest deterministic algorithms for connected components take logarithmic time and perform superlinear work on a Parallel Random Access Machine (PRAM). These algorithms maintain a spanning forest by merging and compressing trees, which requires pointer-chasing operations that increase memory access latency and are limited to shared-memory systems. Many of these PRAM algorithms are also very complicated to implement. Another popular method is “leader-contraction” where the challenge is to select a constant fraction of leaders that are adjacent to a constant fraction of non-leaders with high probability, but this can require adding more edges than were in the original graph. Instead we investigate label propagation because it is deterministic, easy to implement, and does not rely on pointer-chasing. Label propagation exchanges representative labels within a component using simple graph traversal, but it is inherently difficult to complete in a sublinear number of steps. We are able to overcome the problems with label propagation for graph connectivity. We introduce a surprisingly simple framework for deterministic, undirected graph connectivity using label propagation that is easily adaptable to many computational models. It achieves logarithmic convergence independently of the number of processors and without increasing the edge count. We employ a novel method of propagating directed edges in alternating direction while performing minimum reduction on vertex labels. We present new algorithms in PRAM, Stream, and MapReduce. Given a simple, undirected graph [Formula: see text] with [Formula: see text] vertices, [Formula: see text] edges, our approach takes O(m) work each step, but we can only prove logarithmic convergence on a path graph. It was conjectured by Liu and Tarjan (2019) to take [Formula: see text] steps or possibly [Formula: see text] steps. Our experiments on a range of difficult graphs also suggest logarithmic convergence. We leave the proof of convergence as an open problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1